

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

A HOLISTIC MANAGEMENT ARCHITECTURE FOR
LARGE-SCALE ADAPTIVE NETWORKS

by

Michael R. Clement

September 2007

 Thesis Advisor: Alex Bordetsky
 Second Reader: Karl Pfeiffer

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Holistic Management Architecture for Large-Scale
Adaptive Networks
6. AUTHOR(S) Michael R. Clement

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis extends the traditional notion of network management as an indicator of resource availability and

utilization into a systemic model of resource requirements, capabilities, and adaptable allocations from a services
perspective. Central to this model is a mapping of user information requirements onto measurable network attributes
that can be used to evaluate levels of service. A monitoring infrastructure suitable to capturing and visualizing these
attributes is also investigated. The outcome is a framework for understanding, measuring, and monitoring
informational services in terms of their effects on a network. These results could be used to develop semi-automated
and adaptive network monitoring and management suites that would support large-scale network centric operations.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS Adaptive Networking, Holistic Network Management.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

A HOLISTIC MANAGEMENT ARCHITECTURE FOR LARGE-SCALE
ADAPTIVE NETWORKS

Michael R. Clement

Civilian, Naval Postgraduate School
B.S., Seattle University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Michael R. Clement

Approved by: Dr. Alex Bordetsky
Thesis Advisor

Lt. Col. Karl D. Pfeiffer, USAF
Second Reader

Dr. Daniel C. Boger
Chairman, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis extends the traditional notion of network management as an indicator

of resource availability and utilization into a systemic model of resource requirements,

capabilities, and adaptable allocations from a services perspective. Central to this model

is a mapping of user information requirements onto measurable network attributes that

can be used to evaluate levels of service. A monitoring infrastructure suitable to capturing

and visualizing these attributes is also investigated. The outcome is a framework for

understanding, measuring, and monitoring informational services in terms of their effects

on a network. These results could be used to develop semi-automated and adaptive

network monitoring and management suites that would support large-scale network

centric operations.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. MOTIVATION FROM NETWORK-CENTRISM AND SYSTEMS

THINKING...2
C. ISSUES IN TODAY’S SOLUTIONS...4
D. THE PATH AHEAD..5

II. LITERATURE REVIEW ...7
A. OVERVIEW...7
B. REPRESENTING USER’S REQUIREMENTS...7
C. THE GLUT OF MEASUREMENT ...10
D. CONCLUSIONS FROM THE REVIEW..12

III. DATA AND METHODS ...15
A. CONCEPTUAL UNDERPINNINGS...15

1. Requirements for a Holistic Network Management Model15
2. Defining the Building Blocks ..17
3. Links and Flows: The Basic Units of Network Configuration.......19

B. TRANSLATING CIRS INTO BIT-TIME REQUIREMENTS.................20
1. Breaking CIRs into Flows and Service-Level Attributes21
2. Mapping Flow Attributes onto Network Attributes24
3. From Network Attributes to Bit-Time Curves................................26
4. Creating the CIR Language..32

C. MEASURING SERVICE PERFORMANCE ...37
1. Measurement Infrastructure Considerations..................................37
2. Characterizing Flows with Bit-Time Curves...................................38
3. Assessing Link and Path Capability...40
4. Evaluating the Level of Service ..43

D. VISUALIZING THE NETWORK OF SERVICES44
1. The Problem of Holistic Visualization ...45
2. Promising Approaches...46
3. Future Directions ...49

IV. TESTING AND RESULTS...51
A. OVERVIEW...51

1. Testing Goals ..51
2. Testing Environments..51

B. CENETIX, TNT, AND MIO...52
C. LAB TESTING: CHARACTERIZING FLOWS AND LINKS52

1. Test Environment...52
2. Characterizing Video Flows..53
3. Characterizing Link Capacity ..58
4. Accuracy of Service Description and Prediction.............................60

 viii

D. FIELD TESTING: ABILITY TO ARTICULATE SERVICES................63
1. Overview ...63
2. MIO Experiment Network..64
3. Exemplar Case 1: Collaboration Suite...66
4. Exemplar Case 2: Live Video..69

E. FURTHER EXPERIMENTATION...71

V. CONCLUSIONS AND FUTURE WORK...73
A. MAJOR CONCLUSIONS FROM RESEARCH ..73
B. DIRECTIONS FOR FUTURE RESEARCH ..74

1. CIR Translation and Evaluation Frameworks74
2. Tools for Selecting Service Quality Levels.......................................77
3. Improving Measurement Techniques ..78
4. Visualizing Service Performance..79
5. Service Adaptation...80

LIST OF REFERENCES..83

INITIAL DISTRIBUTION LIST ...87

 ix

LIST OF FIGURES

Figure 1. Hierarchy of Application and Physical Network Components........................19
Figure 2. Service-Level Attributes for a CIR..23
Figure 3. Breakout of Service-Level Attributes for Flows within a CIR........................24
Figure 4. Model for User-Centric QoS Categories (From: International

Telecommunications Union 2001)...25
Figure 5. Mapping onto Typical Network Attributes..26
Figure 6. Example Bit-Time Curve for a Single Flow..27
Figure 7. Aggregating Bit-Time Curves for Flows ...28
Figure 8. Example Bit-Time Curve for a Single Link...29
Figure 9. Aggregating Bit-Time Curves for Links..29
Figure 10. Comparison of CIR Requirements Against Path Capability............................30
Figure 11. Evaluating a CIR Along a Specified Path Using the Bit-Time Method31
Figure 12. CIR Specification Model ...32
Figure 13. Utility Function Relating Bit-Time Evaluation to Level of Service................33
Figure 14. CIR Specification in XML...34
Figure 15. Specification and Translation of a CIR..36
Figure 16. Topologically-Distributed Measurement Infrastructure38
Figure 17. Mapping Flows onto Corresponding Links ...44
Figure 18. Network Topology at Each Layer..46
Figure 19. Screenshot of Etherape (From: Ghetta and Toledo) ..47
Figure 20. Screenshot of Big Brother (From: Network Uptime)48
Figure 21. Screenshot of Otter (From: Ma)...49
Figure 22. Initial Lab Test Environment ...53
Figure 23. Simplified Lab Test Environment..54
Figure 24. Round-Trip Time as Determined by the Ping Utility55
Figure 25. Distribution of Packet Transit Times...57
Figure 26. Bit-Time Curve for MJPEG Video Stream in Lab Test58
Figure 27. Mapping Network Factors onto Link Bit-Time Curve58
Figure 28. Results of Iperf Path Measurement with 100 Megabit-per-Second Traffic.....59
Figure 29. Bit-Time Curve for Path in Lab Test ...60
Figure 30. Comparison of Flow and Path Bit-Time Curves ...60
Figure 31. Path Bit-Time Curve for 75 Millisecond Latency ...61
Figure 32. Comparison of Flow and Path Bit-Time Curves ...62
Figure 33. Results of Iperf Path Measurement with Jitter Added63
Figure 34. MIO Experiment Network Topology (From: Bordetsky et al. 2007)..............65
Figure 35. Groove in use during the MIO experiment ..66
Figure 36. Groove Service Topology ..67
Figure 37. User-Required CIR Inputs for Groove Service..68
Figure 38. Video Sharing Tools ..69
Figure 39. Video Service Topology ..70
Figure 40. User-Required CIR Inputs for Video Service..71
Figure 41. Examples of Fuzzy Membership Functions...75

 x

Figure 42. Aggregation of Evaluated Fuzzy Rules ...76
Figure 43. Criteria for Varying Quality of a Video Stream ..78

 xi

LIST OF TABLES

Table 1. Network Attributes Defined as “Bits in Time”..17
Table 2. Typical Service-Level Requirements Expressed in CIRs................................22
Table 3. Capacity Assessment Techniques for Links and Paths....................................41
Table 4. Sample Packet Transit Times from Baseline Test ...56
Table 5. Fuzzy Rules..75

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

First and foremost, I want to thank the Lord for His strength and guidance

working in my life. All that I achieve in life is by His will. Ad Majorem Dei Gloriam.

To my parents, my family, and Caitlin: For supporting me, listening to me when I

got frustrated, and encouraging me never to settle for “good enough,” I thank you and I

love you.

To all those who have taught me, inside and outside the classroom: Thank you for

sharing your knowledge and wisdom.

To Brian Rideout, Andy Strickland, R.J. Simmons, Jamie Gateau, and all the

students who have encouraged and supported me: Your insights, diversions during the

stressful times, and hospitality during late-night study sessions kept me going throughout

the program; thank you all.

To Dr. Netzer, and all the faculty and staff involved in CENETIX and TNT:

Thank you for creating an outstanding work environment. The field experiments have

been my inspiration and my motivation.

To Lt. Col. Pfeiffer: Thank you for allowing me to bounce my half-cooked ideas

off you, for guiding me in performing quality research, and for a good cup of coffee in

the mornings!

Finally, to Dr. Bordetsky: Sir, you have supported me in this endeavor on a level

that has far surpassed my greatest expectations. Your leadership, guidance, and friendship

made this achievement possible. I thank you from the bottom of my heart for taking me

under your wing and building me up as a researcher.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OVERVIEW

The modern military force is becoming increasingly networked, and what was

yesterday an experimental supplement to existing operating procedures is today a

fundamental capability. Unmanned Aerial Vehicles (UAVs) provide live Intelligence,

Surveillance, and Reconnaissance (ISR) to localized forces on the ground; command

centers located in the U.S. control ISR platforms thousands of miles away; and

commanders monitor near-real time tracks of blue forces on the ground, in the air, and at

sea. These capabilities are merely the tip of the iceberg. Developmental technologies for

fusing geospatial, biometric, imagery, and other sensor data are providing levels of

battlespace awareness previously unseen. All of these data sources need to be fed to

various consumers for processing, analysis, and subsequent decision-making.

As the number of data sources and data consumers increase, even the most

capable networks will be taxed to deliver all users’ critical data in a timely and reliable

manner. This prompts the need for mature network monitoring and management (herein

collectively referred to as network management) technologies that enable administrators

to monitor the usage of network resources and manage the allocation and prioritization of

resources to different users’ Critical Information Requirements (CIRs).

Current network management technologies are oriented toward the network

administrator, who reasonably is most interested in metrics including bits or packets per

second, link and path latency, and percent packet loss. However, these metrics only

describe the aggregate effect of myriad data “flows” traversing each link that comprises

the network. Industry standards such as the Simple Network Management Protocol (Case

et al. 1990) are link- and path-oriented; the missing piece is the relationship between this

layer of network performance and the application and services layers which describe the

actual data flows that satisfy user CIRs.

 2

In an ideal, futuristic network-centric operation, users would dictate their CIRs to

the Global Information Grid (GIG) in real-time; these would be evaluated against

available resources and information providers; and intelligent selection, prioritization,

and adaptation would establish the best fit between all users’ requirements. This

mechanism would be capable of not only prioritizing certain users or applications over

others, which is similar to modern Quality of Service (QoS) technology, but also to both

adapt application traffic to fit within available resources and modify the behavior of the

network itself.

This research work focuses on the “network awareness” aspect of this vision;

namely, generating a holistic view of the network state, both in terms of capability and in

terms of current load and user requirements. In particular, this thesis aims to elucidate the

relationship between an operator’s view of a “service” and the network administrator’s

view of “network performance,” and build a framework for describing network

performance in terms of the specific services fulfilling user requirements, enabling both

descriptive and predictive analysis at the services layer.

B. MOTIVATION FROM NETWORK-CENTRISM AND SYSTEMS
THINKING

A major premise of this research is that effective network management is a

critical element of Network-Centric Warfare (NCW). (Keshav and Sharma 2000)

postulate that service quality is closely tied to the quality of network management. This

view is reflected in core NCW literature, including (Alberts et al. 1999, 191):

An infostructure must be properly managed to ensure that it is
dynamically tuned to meet the warfighter’s needs. Enhanced capabilities
for network operations will provide operational commanders with a real-
time picture of the status of the backplane. This picture, when combined
with advanced capabilities for intelligent network management, will
provide commanders with the flexibility to tune the infostructure and
synchronize information transport and processing with military operations.

Alberts et al. describe a “real-time picture” that aligns with the holistic network

view discussed above. Their model exposes some of the requirements of such an

instrument. The need for management implies that a network is an inherently scarce

 3

resource; thus the role of a network-centric management system is to mediate all users’

CIRs against the resources available for fulfilling those CIRs. To do so, the capability,

requirements, and usage of the network must be monitored in as near real-time as

possible. Changes may occur so quickly that a comprehensive but high-latency

monitoring tool will never yield timely and actionable information. This drives a

requirement to find a suitably minimal set of data inputs to feed the network management

model, minimizing the transmission and processing overhead required for management.

The challenges of building models to describe dynamic systems are well-known

to the field of systems theory. Unlike detailed complexity, where with sufficient data

input and processing time nearly any calculation is possible, system thinking treats the

existence of complex relationships between variables that make analytics difficult (Senge

2006, 71):

But there is a second type of complexity… situations where cause and
effect are subtle, and where the effects over time of interventions are not
obvious. Conventional forecasting, planning, and analysis methods are not
equipped to deal with dynamic complexity.

It may not be feasible to build a comprehensive, analytical model for the behavior

of data networks. Not only does each node, link, and service have myriad descriptive

parameters; the quantity, combination, and configuration of these components extend

indefinitely within the bounds of physical and logical limits. The overabundance of

potential data input greatly increases the challenge of finding a simple approach to

assessing the state of the network. Moreover, the performance state of one network link

may be dependent on traffic originating and terminating in distant parts of the network,

adding to the subtleties of interaction. Finally, as pointed out in (Barford et al. 2001),

each location in the network sees only a “projection” of the whole, making

comprehensive data collection still more challenging. These obstacles indicate the need

for a less comprehensive-analytical, more systemic-holistic approach to managing

networks.

This approach might be summarized in the term holistic network configuration

management: a model of network services and resources that culminates in the depiction

 4

of network behavior as it relates to its intended use. The Fault, Configuration,

Accounting, Performance, and Security (FCAPS) management model (International

Engineering Consortium 2007) approaches this concept by defining the overarching

business process of network operations, focusing on the reduction of system and network

downtime and maximizing availability of information resources. In this research, the idea

of maximizing user levels of service is re-investigated, starting from current

implementations of network management and drawing on emerging research as discussed

in the next chapter to produce a new model of configuration management from a holistic

perspective.

C. ISSUES IN TODAY’S SOLUTIONS

Modern network monitoring platforms focus primarily on two facets of network

performance: reach and link performance. Reach refers to the ability of a given

networked node to converse with other nodes within the same network. Ideally, any

networked node can reach any other node; however, reach may be restricted for many

reasons, including overloaded links, weak wireless link signals, improper device

configuration, or device failure. Link performance, as stated earlier, is the aggregate

effect of all traffic flows traversing a physical network link relative to the capabilities of

that link. This can be further divided into range and responsiveness, reflecting the three

dimensions of telecommunications services as defined in (Keen and Cummins 1994).

When the network administrator is responsible for monitoring backbone

infrastructure and the main concerns are accessibility of resources and gross resource

utilization, these are appropriate aspects to monitor. However, when the network

administrator is tasked with managing a rapidly-changing network both in terms of users

and applications as well as the physical and logical topology, it becomes crucial to

achieve a high-level understanding of network behavior and activity. Although existing

network management solutions may be able to answer the who, what, and where of

resource usage, none tie these back into the larger picture of describing and monitoring

the needs of network users: their CIRs.

 5

The same shortfalls apply to modern QoS techniques, most of which are

accounting-focused. These approaches operate by dividing a static-sized available

resource among a known set of nodes and services, ensuring that at no time are more

resources obligated than are available. While this does accomplish the goal of managing

finite resources, even prioritizing certain nodes and services over others, it entirely misses

the point of a service-focused network. The centerpiece of the network should be the

users and their CIRs, rather than the links that service those users. Contrary to the QoS

model, it may not be reasonable to guarantee that resources obligated at one time will

remain available at subsequent times; applications may need to adapt to changes in the

network environment. Likewise, if certain CIRs are overtaxing the network, it may be the

responsibility of the network to adapt to better accommodate those needs. In order to

inform such an adaptive model, the bar must be raised on network management strategies

to provide a stronger user- or service-focus.

D. THE PATH AHEAD

Motivated by the concepts of network-centricity and system dynamics, and

understanding the gaps in modern network management methodologies, the goal of this

thesis is to develop a conceptual and prototypical framework for holistic network

management. More specifically, the aim is to create an integrated picture of services and

infrastructure, where resources, services, and user needs intersect to create a usable,

actionable depiction of network behavior and a means to assess its performance in terms

of articulated CIRs. This work will provide a foundation for further research in adaptive

networking and holistic network configuration management.

One major gap that must be addressed is the relationship between a CIR and its

underlying applications, and in turn between those applications and their effects on a

physical and logical network. This research builds on existing studies of applications

performance and layered network models, and leads to a framework for describing CIRs

at a high level and translating those descriptions into measurable network properties.

Using this framework, it will be possible to develop a measurement methodology that

provides satisfactory awareness of CIR performance with minimal overhead. The product

 6

of this thesis is a conceptual model of CIR description and translation, and discussion of

measurement and visualization techniques appropriate to a holistic network management

approach. This model should allow a network administrator to achieve awareness not

only of how the network is behaving, but of how it is being used and how well it is

satisfying its use.

 7

II. LITERATURE REVIEW

A. OVERVIEW

The overall goal of this research is to translate operators’ CIRs (i.e., information

requirements expressed from the viewpoint of the user) into concrete network

requirements to be assessed against the live tactical network. The results must be

gathered and presented in such a way that will neither overload the network nor

overwhelm the user. To achieve this, both a model for translating information

requirements and an appropriate measurement architecture must exist; although the

measurement architecture is not defined by this research, its subsequent discussion

necessitates a review of prior work. This chapter will review related academic literature

as well as the contributions of industry, identifying both the foundations and the gaps that

form the starting point for the contributions of this research.

B. REPRESENTING USER’S REQUIREMENTS

A major challenge of effective service-level network management has always

been how to describe services as the end-user perceives them. This problem is identified

repeatedly in academic literature (Parulkar et al. 1997) (Galetzka 2004). In attempting to

build a management architecture, Parulkar et al. (1997) point out the difficulty of

dynamic network adjustment due to “the fact that demands keep changing and are not

completely known.” Fortunately, there is significant existing work in translating

requirements at one layer into measurable properties at another.

Research into Quality of Service architectures deals heavily with the mapping of

services across layers. The International Telecommunications Union (ITU) has published

several “recommendations” documents on this topic. ITU-T Recommendation G.1010

(International Telecommunications Union, 2001) is referenced heavily in academic

literature; this document describes several common types of traffic flows, ranging from

video and audio streams to email and web browsing, and for each provides expected

throughput as well as tolerance to packet loss, errors, latency, and jitter. This and similar

 8

studies form a foundation for mapping application-specific traffic to generic network

attributes, which is useful when the set of services is known in advance.

Other research focuses on models for translation from application to network

requirements. Nahrstedt and Smith (1994) present a model of network management based

on requirements translation starting at the application layer; however, they feed their

result into a QoS control loop rather than a monitoring capability. Their model defines in

detail the relationships between various multimedia attributes (e.g., video resolution and

frame rate) and complementing network attributes (e.g., bit rate, latency, and jitter).

While their work is not exhaustive, it provides an excellent starting point for further

quantitative study of these relationships. DaSilva (2000) complements their model with a

study of QoS for packets where delay and loss are introduced at the data-link layer. He

argues the importance of understanding how network behavior at lower layers affects the

ability to guarantee service levels at higher layers.

There has also been work done mapping the application layer onto higher layers,

closing the gap on describing services from the human perspective. Guo and Pattinson

(1997) define a four-layer model consisting of network, system, application, and user,

and identify five categories of quality requirements spanning from traditional QoS

metrics to subjective human-based qualities. Bauer and Patrick (2004) reference this

model and build their own that extends the seven-layer OSI model (Zimmerman 1980)

with three additional layers: human interface, human performance, and human needs.

Although neither paper specifies the mechanics of these relationships, they create a basis

for phrasing application and network requirements in terms of the user’s needs. As Bauer

and Patrick point out, these extensions go beyond the definition of QoS, into what many

researchers have termed Quality of Experience.

Quality of Experience (QoE) is a term found in recent literature that discusses

service-oriented measures of quality and performance. Although the precise definitions

vary, QoE is in general terms the perceived experience by the user of the services that

user expects to receive. A white paper by Polycom (O’Neil 2002) stresses that QoE “is

the true litmus test” of an end-user’s experience. Since the typical end-user does not

articulate service requirements in terms of bit rate or jitter, much of QoE research focuses

 9

on enabling users to dictate their own requirements to the network and to interactively

prioritize their needs. Siller and Woods (2003) discuss a resource arbitration system

based on QoE, and conduct experiments using a tunable-knob approach wherein users

manually vary parameters at the application and network layers to achieve the QoE they

desire. Galetzka, on the other hand, builds a model for what he terms “user-perceived

quality of service” (Galetzka 2004), which he relates to QoE. His model ties together the

inter-layer mappings and effects as discussed earlier in (Nahrstedt and Smith 1994) and

(DaSilva 2000) and the categorizations from (International Telecommunications Union

2001), and creates four user-layer attributes that apply across all service types:

availability, timeliness, accuracy, and affordability. He presents an example for a

television programming guide service, defining these parameters within that specific

context; however, he does not propose a generic framework for service parameter

translation.

Although models and examples abound, in order to implement QoE or other

service-layer metrics on a large-scale network such as the Internet or Global Information

Grid, there must be a general framework for describing services in terms of their

requirements on underlying layers. Zhou et al. (Zhou et al. 2005) propose DARPA Agent

Markup Language for QoS (DAML-QoS), an ontology for service semantics. DAML-

QoS is oriented toward matching web services with customers’ needs; each service

request includes attributes such as service cost or response time, which are constraints

that responding service providers must be able to satisfy. Their framework includes a

notional measurement architecture for evaluating web services according to these

metrics, and an ontology converter and reasoning engine to match available services to

service requests. XQoS (Exposito et al. 2002) is another format for service specification;

in their case, an XML schema that describes QoS requirements. For each component of a

multimedia stream, the schema defines characteristics such as minimum reliability that

must be met by the network. However, both approaches still rely on a heavy knowledge

of network and application characteristics, leaving the translation from a true user-centric

layer to the underlying layers an open field for study.

 10

Regardless of the mechanics, once CIRs are translated into requirements for the

network, these requirements must be monitored effectively so that the human operator or

administrator, or an autonomous agent, can appropriately adjust the behavior of

applications and of the network to suit the needs of all users. In order to accomplish this,

the network must be outfitted with a suitable measurement architecture.

C. THE GLUT OF MEASUREMENT

When it comes to the broad field of monitoring network performance, there is no

lack of metrics to assess and tools with which to capture those metrics. From polling of

individual devices through SNMP (Case et al. 1990) to application traffic analysis with

NetFlow (Claise et al. 2004), to active probing of network topology and link capacity

(Jacobson), the network administrator might easily be overwhelmed with all the network

performance data available. However, this assumes the right infrastructure is in place to

capture that data. There are several approaches to network measurement and monitoring,

each with its own benefits as well as costs.

A classic approach to network measurement is device polling or probing:

periodically asking each element of the network if it is alive, and for information about its

state. This began with the Ping utility (Kessler and Shepard 1997) which assesses two

metrics: whether or not the node being polled is alive, and how long it takes to send a

message to that node and receive a response. Interestingly, these are still very common

metrics used by network management suites including Solarwinds (Solarwinds). Variants

of this measurement include Traceroute (Kessler and Shepard 1997) and Pathchar

(Jacobson 1997), which measure the path taken between two nodes and the per-hop link

capacity along that path, respectively.

One step beyond basic probing techniques are device statistics-polling protocols.

The Simple Network Management Protocol (SNMP) (Case et al. 1990) is a current

standard for per-device data collection. SNMP provides access to each device’s

Management Information Base (MIB), which is a collection of configuration fields and

counters kept by the device. The interface MIB (McCloghrie and Rose 1991), which is

maintained for each network interface on a device, has values such as packets received

 11

and sent, bytes received and sent, and packet error counts. Proposed extensions including

the SM MIB (Choi and Hwang 2005) monitor additional end-to-end path characteristics

including packet loss and jitter. Solarwinds and other network management tools monitor

SNMP data, providing one means of tracking the performance and behavior of the

network.

However, there is more to the network than what node and link measurements

depict. These statistics do not reflect the behavior of individual applications. Cisco’s

NetFlow standard (Claise et al. 2004) and Foundry’s sFlow both capture statistics on each

flow traversing a router or other capture device. These statistics may then be analyzed

and presented via collection systems such as Ntop (Deri and Suin 2000). Not only does

this provide another dimension of network performance data, it is also a departure from

the centralized polling model of SNMP and its kin. In the NetFlow architecture, each

monitoring device captures and aggregates network data, periodically sending reports to a

collection server. This has the benefit that if no traffic is traversing a part of the network,

no reports are generated.

Several researchers postulate network measurement models that incorporate these

and other techniques to create a coherent view of network activity and behavior. Keshav

and Sharma (Keshav and Sharma 1998) propose a lifecycle model of the network that

includes topological discovery, monitoring, performance problem identification,

configuration testing through simulation, and modification leading to a new network.

Aside from simulation and modification, this model draws on all the techniques identified

above; in fact, the authors propose integrating several existing tools to achieve the

necessary data collection. Researchers at AT&T (Caceres et al. 2000) put forward another

integral approach, in this case collecting ICMP, SNMP, NetFlow, and server log data into

a data warehouse for wide-scale network analysis. Most of their research applications,

however, are oriented toward data mining vice real-time monitoring of services.

Other models have been proposed that diverge from the use of off-the-shelf tools,

instead favoring a customized approach. Parulkar et al. (1997) lay out an architecture

that, on the surface, looks similar to (Caceres et al. 2000) in that distributed data captures

are gathered in a central data store. However, this particular approach is geared toward

 12

real-time visualization and monitoring of network behavior. As such, they design

dedicated probing nodes for data collection, distributing the need for processing power

and reducing network overhead by only transmitting processed reports across the

network. Estan and Varghese (Estan and Varghese 2003) recognize the scalability issues

of tracking millions of discrete flows via technologies like NetFlow, and propose a

scheme that only monitors flows over some threshold of link utilization. Their

assumption is if there is a congestion point in the network, then it is most likely occurring

because of large flows; therefore, tracking the behavior of these flows will lead to the

problem area as effectively as tracking all flows, and with significantly reduced overhead.

One common theme in nearly all approaches discussed above is resource

overhead in network monitoring. For any measurement instituted, there is inherent

processing, memory, and network utilization attached. Barford et al. (Barford et al. 2001)

investigate this overhead and come to the conclusion that, given a relatively stable “core”

infrastructure, increasing the number of network probes does not yield more useful

network information. They focus on Traceroute, which is a relatively lightweight

measurement, and demonstrate that for very large networks there is little gain in

surpassing a few well-placed probes. Similar to the resource-conscious architecture in

(Estan and Varghese 2003), this paper establishes an additional constraint on network

monitoring architectures: they must not impinge on resources needed to conduct mission-

critical operations.

D. CONCLUSIONS FROM THE REVIEW

There is an abundance of interest both in translating user requirements into

resource requirements and in measuring the network to evaluate the satisfaction of those

requirements. Despite the depth of research already done in these areas, there is still

significant ground to cover. There are many models for “Quality of Experience” and

service-layer translation, but this work has mostly resulted in simple experiments or one-

off examples; a generic framework that applies across service domains is still needed. It

is also clear that while many network measurement tools exist, one must choose carefully

the set of metrics to capture in assessing service satisfaction; not all measurements add

 13

value, but all add overhead. In the following chapters, these topics will be further

addressed, and a framework will be laid out for generic service description, translation,

and measurement within the tactical network domain.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. DATA AND METHODS

A. CONCEPTUAL UNDERPINNINGS

From studying the strengths and weaknesses of existing network management

models, some general requirements for a holistic model emerge, all centered on the idea

of evaluating levels of service achieved vice network performance. To build a meaningful

framework for service translation, measurement, and evaluation, it is important to

formalize these requirements and define some concepts that will form the building blocks

of this model. From these building blocks will emerge the framework for translating CIRs

into attributes that can be measured and evaluated.

1. Requirements for a Holistic Network Management Model

There are five requirements this research identifies as crucial to creating the

systemic-holistic (herein referred to as holistic) network management model described in

the first chapter. The first three are functional requirements, which specify the objectives

the model must be able to accomplish. The last two are quality requirements, which

describe the way in which the model must work in order to be usable. Together, these

requirements form the rationale for the architectural choices defined later in this chapter.

First, the model must focus on the information needs of the individuals using the

network, i.e., the set of CIRs. As opposed to models that focus on the accounting of each

traffic flow or the utilization of each link, a holistic model must evaluate the capability of

the network to deliver the services requested by its users, and present network

performance problems in terms of the affected CIRs and all relevant portions of the

network. Disparate CIRs that share underlying infrastructure may cause compound

problems; this model should identify all services and network components related to a

problem so that administrators can effectively pinpoint and correct the problem.

Second, the model must be descriptive; that is, it must accurately depict the

behavior of a network, given some set of input parameters. These inputs should be

 16

sufficient to express the configuration of the network, i.e., its topology and capacity, and

the activity on the network, i.e., the set of traffic flows traversing the network. Given

these inputs, the model must correctly assess the performance of each CIR. In this case,

configuration and activity data come from the measurement infrastructure, which is

discussed later.

Third, the model must be predictive. It must accurately assess the effects of

proposed changes to the current, known network state. Here, all statements pertaining to

the model’s descriptive capability apply; however, proposed changes must also be

expressed as input parameters. This applies both to changes in network configuration,

e.g., altering the characteristics of a link, and to changes in network activity, e.g., adding

another CIR. The model must be able to provide the same resulting analysis for this

hypothetical case as it would for the observed network.

Fourth, the model must be solvable within a useful decision-making time cycle. In

order to be usable, the model must provide updated information to the administrator

within the human response cycle necessary for maintaining a serviceable network state.

Put another way, it must be able to inform the individual about emerging conditions

quickly enough that the individual can react and maintain acceptable levels of service.

Van Creveld (1985) discusses this relationship between speed and effective command of

forces; this carries over into the command of systems supporting those forces. This

requirements places constraints on the types of models that may be used: certain types of

simulation require many iterations to converge or predict a result; these may be

inappropriate for generating high-speed results. There are also tradeoffs to be considered

in the precision of the model versus its responsiveness.

Finally, use of the model must not impinge on operational traffic. There is a

wealth of measurement and assessment techniques available which may be leveraged to

obtain any number of network performance metrics. However, as alluded to in (Barford

et al. 2001) capturing and processing every possibly metric is both pointless as many

metrics do not add value to the assessment, and obstructive as each additional metric

collected detracts from the resources available to services. The model should only utilize

measurements and computations that are necessary for accurately describing and

 17

predicting service performance, and may make use of techniques such as “no news is

good news,” only sending pertinent changes in network state.

2. Defining the Building Blocks

Analytical techniques break systems into their component parts, investigating the

properties of each part separately. Systems thinking starts with the parts and studies the

relationships between them that form the whole. Following in the latter tradition, this

model begins with the definition of its elemental properties, and builds from there.

If the “Service” or CIR is the highest concept in this model, the lowest is the

notion of “Bits in Time.” This model proposes that all other network properties can be

expressed in terms of X bits in Y time. A network requirement would then take the form

of needing to communicate X bits within Y time. Bandwidth is a measure of the X bits

per Y time, on average. Latency is the Y time it takes to communicate X=1 bit. Loss is

XT – XR bits over Y time, where XT is the bits transmitted and XR is the bits received.

The Bits in Time relationships for common network attributes are presented alongside

with definitions based on relevant literature in Table 1.

Attribute Common Definition Bits in Time Definition

Throughput Average rate of bits
between source and
destination

Average X bits in Y time

Burstiness Variation in rate of bits
between source and
destination

Distribution of Y time
between X bits

Latency Average time taken for
bits to arrive at their
destination

Average Y time per bit

Jitter Variation in time taken
for bits to arrive at their
destination

Instantaneous Deviation
in Y time per bit

Loss Percent of sent bits that
do not arrive at their
destination

XT bits sent minus XR bits
received over Y time

Table 1. Network Attributes Defined as “Bits in Time”

 18

This is similar to but distinct from the Service Level Agreements (SLAs) defined

in (Clark and Gilmore 2006), which are of the form X percent of bits (or messages) in Y

time. One of the fundamental notions of the Bits in Time model is that, assuming some

level of connectivity and given enough time, all bits will get through. If reliable protocols

are implemented, then any “lost” bit can be rescheduled and retransmitted, merely

delaying the reception of that bit. Therefore loss is only characterized for bounded time.

This introduces the second concept: each bit has value, and that value is time-dependent.

In fact, it could be said that each bit’s value is a monotonically-decreasing function of

time, which approaches zero at some critical “value deadline,” after which the bit no

longer has value and may as well not be transmitted at all. Loquinov and Radha (2001)

discuss this in detail as it applies to streaming video.

Some simple examples can illustrate. A meteorologist may wish to forecast

tomorrow’s weather; however, if the best model can compute that forecast in no fewer

than forty-eight hours, that forecast will be of no value since the tomorrow’s weather will

be known empirically by that time. Some streaming video protocols transmit each frame

in a separate packet; if a packet misses its deadline for decoding then that frame is

dropped and the video continues to play. Even if the packet was merely late to arrive due

to high latency, it was effectively lost because it did not arrive while it still had value.

Hence, loss is characterized within a finite timeframe, because bits have time-dependent

value.

The notion of bit-value has another meaning. If each CIR has value to an

individual and each CIR is composed of bits carrying information, then each bit must also

have some value to that individual. This relationship is complicated by the specific type

of information the bit represents. As will be discussed later, different types of information

have varying tolerances to loss, latency, et cetera. A missed bit in a video stream is of

lesser consequence than a missed bit in a text message, indicating that the value of single

bits is both information type- and context-dependent. However, collections of bits may

still be quantified, or at least qualified, in terms of the value they potentially deliver to the

recipient.

 19

3. Links and Flows: The Basic Units of Network Configuration

The physical-logical network consists of nodes, e.g., computers and routers,

connected by links. Since modern computing systems process data at speeds far greater

than typical network links, performance attributes need only be measured for links. Data

travels from source to destination along a sequence of links, known as a path. The path

has certain performance attributes that are based on the links that comprise it. For

instance, the maximum one-way throughput of the path is theoretically the minimum of

the throughputs of all links along that path. Path latency is theoretically the accumulation

of all link latencies, plus minute overhead introduced by intermediate nodes. These

aggregate performance attributes in turn affect the other basic unit of networks: flows.

Flows are the applications network equivalent of links: they are the singular

components which represent each independent stream of communication. Aggregates of

one or more flows form a service, which is the instantiation of a CIR. Each service has

value to the recipient of that service; likewise, each flow has a value to the service. Flows

have performance attributes, here in the form of requirements, which utilize the resources

of the paths along which those flows travel. Hence, there is a hierarchy of related

attributes and requirements spanning from services to links, as depicted in Figure 1.

Figure 1. Hierarchy of Application and Physical Network Components

 20

Each CIR is instantiated as a service, which in turn consists of distinct flows that

carry information between endpoints on the network. These flows each traverse a specific

path, which is comprised of links. Here the crucial point of comparison emerges: the

network aggregate, paths, are attributed with certain capabilities; the services singular,

flows, are attributed with certain requirements. Services have value to the individual,

meaning that the capability of each path to effectively carry its respective flow affects the

manifest value of the service. Taken one step further, each link, which may carry many

flows along many paths, and which has finite capacity, affects the performance and

therefore the value of each service it bears. The ability to evaluate the performance of

services in light of these relationships will yield a holistic picture of both network and

service performance.

Such an approach has certain difficulties associated with it. The relationship

between each flow-bearing path and the set of all underlying links is a complex mapping.

Distinct flows between pairs of endpoints in seemingly distant parts of the network may

share common links, putting those flows in competition for finite resources. Tabulating

each combination of service, flow, link within that flow’s path, and every network

attribute would take a matrix of several dimensions. Memory and computational

requirements for evaluating both descriptive and predictive cases would quickly grow out

of reasonable proportion. The fundamental notions of Bits in Time and bit-value

deadlines, along with a language for describing CIRs in terms of component flows and

those flows’ requirements, offer the possibility of a simpler way of expressing services

and evaluating service performance. Building this language is the next requisite step in

framing this model.

B. TRANSLATING CIRS INTO BIT-TIME REQUIREMENTS

Each CIR is an expression of an individual’s specific informational need over a

particular period of time. It might be a video teleconference between generals, or the

position and status of a neighboring fire team. If written in plain English, CIRs would be

simple statements such as “live surveillance video from a Predator UAV flying over Al-

Anbar province from 1900-2300.” Explicit in these statements are data sources and

 21

destinations, data types, and the time at which the CIR is required. Yet other important

parameters remain implicit, such as value of this CIR to the requestor, component flows

that constitute the service, and the relationships between network performance of the

flows and the overall performance of the service. To make these parameters explicit, each

CIR must be expressed in a definite language that consists of key terms understood both

by operators and the network management system.

The following scenario is used throughout this section to demonstrate the

concepts of the proposed model: a watch-stander in the field wishes to monitor video

surveillance from a UAV flying over a border area; the watch-stander needs to see any

humans or vehicles attempting to cross the border. The UAV runs on auto-pilot while

airborne, leaving the watch-stander responsible for controlling a gimbaled camera to

sweep the border as the UAV flies overhead.

1. Breaking CIRs into Flows and Service-Level Attributes

A computable expression of a CIR must articulate both service-level requirements

and descriptions of each component flow. Each flow must be described in terms of its

performance requirements and the relationship between its performance and the value

achieved. For instance, if the CIR for the scenario above is assessed and the video is

providing two frames per second at low resolution, its value to the recipient may be lower

than if video was providing 20 frames per second at high resolution.

 22

Requirement Attribute

How quickly recipient gets a file, email, etc. Responsiveness

How near a recipient’s multimedia stream is to real-time Responsiveness

How easily heard or seen is the party on the other end of
a teleconference

Clarity

Ability to see movement and motion in video Clarity

Ability to make out fine details in video or audio Clarity

Not missing any important messages Reliability

How frequently a unit’s status is updated Responsiveness

How quickly a question is answered Responsiveness

Not encountering hang-ups in a multimedia stream Reliability

Table 2. Typical Service-Level Requirements Expressed in CIRs

Table 2 lists examples of high-level service requirements along with possible

service-level attributes. These are the kinds of attributes the individual specifying the CIR

may use to articulate requirements at a high level. Notice that these service-level

attributes differ from network attributes such as throughput and loss, though they may

map onto one or more network attributes. An important difference is that service-level

attributes express qualities that the user experiences, whereas network attributes express

underlying qualities that must exist to provide that experience. The way in which service-

level attributes map to measurable network metrics may be context-dependent and should

be transparent to the user.

Immediately, some of these attributes apply to the scenario. First, the watch-

stander likely cares that the video is near real-time, because watching video of a vehicle

crossing the border several minutes after it actually happens is significantly less useful

for tracking and intercepting that vehicle. Responsiveness is also important in a second

way: the camera control messages sent by the watch-stander to the UAV must get

through quickly in order to have a usable, interactive surveillance platform. The video

must have clarity; being able to see the motion and details of people and vehicles on the

ground is more useful than seeing small, unrecognizable blotches. Finally, there is a

 23

requirement for reliability insofar as the video must be relatively smooth and have a low

frame-drop rate. However, this requirement is not as strict, as some loss is acceptable for

streaming video. Service-level attributes for the scenario CIR are shown in Figure 2,

along with notional mappings onto network attributes.

Figure 2. Service-Level Attributes for a CIR

The scenario CIR may consist of a few distinct flows: a one-time transaction to

authenticate with and negotiate for control of the UAV camera; a continual stream of

video; and periodic messages to control the direction and zoom of the camera. Each flow

has performance attributes which aggregate to determine overall service performance.

Since authentication and control negotiation will likely only occur once at the beginning

of the service period, its responsiveness requirement is not very strict. However, it does

have a strict reliability requirement; those bits must get through before the next step can

proceed. On the other hand, the video stream itself can suffer some loss, but should be

more responsive to guarantee near real-time coverage. Camera control has perhaps the

most stringent requirements: it must be responsive as well as reliable. Slow response

times will degrade the interactive quality of the system, whereas missed or erroneous

messages will cause errant system behavior. Figure 3 shows service-level requirements

mapped onto individual flows.

 24

Figure 3. Breakout of Service-Level Attributes for Flows within a CIR

2. Mapping Flow Attributes onto Network Attributes

It is the task of the translation framework to map these service-level attributes

onto measurable, network-level metrics. Some of these relationships are complex; for

instance, clarity at the service level is a function of resolution, frame- or sample-rate, and

distortion or bit-error. These in turn map onto network attributes such as throughput and

loss. However, other factors including delay and jitter contribute to increased loss and

decreased throughput, complicating these relationships. Hence, understanding these

relationships is critical to translating CIRs.

There are several dimensions along which to distinguish types of flows. One is the

burstiness of the flow, i.e., if it is singular, transactional, conversational, or streaming. A

single DNS query would be transactional, whereas a voice call would be conversational.

Most video flows are streaming, and singular flows apply only to one-off messages that

require no response. Flow burstiness correlates with other attributes such as latency and

loss. Singular and transactional flows tend to require low or zero loss, but often have

more lenient latency requirements. Conversational and streaming flows such as voice

 25

calls and video streams, tend to have higher tolerance to loss, but may need to have lower

latency in order to maintain a near real-time requirement. (International

Telecommunications Union, 2001) provides an elegant summarization of these

dimensions in their own terminology in Figure 4.

Figure 4. Model for User-Centric QoS Categories (From: International
Telecommunications Union 2001)

The importance of other network attributes is less obvious, but they can be

significant factors for some flow types. Jitter, the variation in latency, can cause

individual packets to be exceptionally late to arrive and therefore miss their deadlines.

Jitter has little effect on singular and transactional flows, but for streams that have real-

time requirements jitter leads directly to loss. Loguinov and Radha (2001) demonstrate

that for low-bitrate streaming flows, jitter has nearly two orders of magnitude more effect

on perceived loss than actual packet loss and constant latency combined.

The performance attributes of each flow place requirements on the underlying

network paths and their constituent links. In the scenario, all flows likely traverse the

same path, but this is often not the case. Regardless, for each flow-bearing path, flow-

level requirements must be evaluated against available resources in order to determine

service performance. In descriptive cases where all services are directly observed, this

may be a simple matter of aggregating available performance data. One approach would

be to accumulate the “sum” of all flow requirements, then compare this against the

 26

aggregate of the capabilities of all links along the flow path. This is demonstrated for

three typical network attributes in Figure 5.

Figure 5. Mapping onto Typical Network Attributes

First, individual flow requirements must be aggregated and mapped onto the links

and paths carrying those flows. Total throughput might be the sum of each flow’s

required throughput; total latency and loss might be the minimums of all flows’

respective requirements. These requirements are then compared against the aggregate

capability of the path. Figure 5 shows possible calculations of path attributes.

This approach does provide a usable hierarchy from service-level attributes down

to network performance metrics. However, it does not achieve the elegance desired for a

holistic model, nor does it account for the achieved value of the service. A model that

drills down to the essential dimensions common to all types of flows will yield a

translation mechanism more suitable for a holistic management model.

3. From Network Attributes to Bit-Time Curves

A different formulation of network requirements uses distributions of bits over

value deadlines. Rather than using typical network attributes which describe the average

behavior for traffic flows, these distributions or “bit-time curves” describe the statistical

behavior of the entire flow. Along the time axis (where zero is the time of bit

 27

transmission) is a curve that represents the number of bits that must successfully transit

the network by each time t. This forms a snapshot from the perspective of the source for

any given moment, depicting for all bits originating at that moment the distribution of

value deadlines. For flows that include both bits that must be received very quickly and

bits that may take longer to arrive, the bit-time curve will more accurately represent the

flow’s requirements than stating a single average throughput or latency requirement. An

example bit-time curve is shown in Figure 6.

Figure 6. Example Bit-Time Curve for a Single Flow

This representation follows suit with the Bits in Time model; the focus of network

measurement becomes the time it takes for bits to reach their destination. A latency

requirement is a requirement that bits do not arrive past a certain deadline. Likewise, a

loss requirement is a statement that no more than a certain percentage of bits may fail to

arrive before their deadline. All flow traffic is then viewed in terms of value deadlines: a

latent bit becomes a lost bit if it misses its value deadline; a lost bit, if retransmitted

successfully before its deadline, is merely late.

Service-level attributes have effects on these curves. Figure 6 illustrates the

relationships between some attributes and the shape of the curve. In order to increase

clarity, more bits must be used to represent the information more precisely. This stretches

the curve on the bits axis. Strict responsiveness requirements tighten the curve on the

time axis. Reliability is more difficult to represent in the flow’s curve, but will be

 28

represented in link capability. These curves may be derived mathematically, based on the

relationships between network metrics and service-level attributes already understood

qualitatively. However, bit-value curves can also be derived from empirical data and

generalized by flow type and service-level requirements.

The bit-time representation also allows for an elegant algebra for aggregating

flow requirements into service requirements and link capabilities into path capabilities. In

the case of flows, the aggregate of several flow requirements is the addition of their bit-

time curves, as shown in Figure 7. Since each flow’s curve describes the quantity of bits

that must arrive by certain deadlines, adding flows together simply increases the quantity

of bits due at their respective deadlines. This method can be used to determine the total

capacity required of a link or path to support a given set of flows. It is important to note

that, in practice, adding flows’ curves together is only useful for multiple flows that

traverse the same network path; also, flow bit-time curves may feature non-linear

properties that would complicate the literal mathematics of flow aggregation.

Figure 7. Aggregating Bit-Time Curves for Flows

Links can also be described by bit-time curves. In their case, the curve generally

starts at the origin, since zero bits can be transmitted in zero time. Over the minimum

time that it takes for bits to transit from source to destination, the value of this curve

remains zero, after which it steps or slopes to a constant positive value corresponding to

the average behavior of the link. This value is determined by throughput, latency, loss,

and any other parameters that influence the effective rate of bit transfer. In general,

increasing the throughput increases this value, whereas increasing the latency and loss

decreases it. An example bit-time curve for a single link is shown in Figure 8.

 29

Figure 8. Example Bit-Time Curve for a Single Link

It is also possible to aggregate several link curves into a path curve, though the

mathematical relationship would be different than that for flows. Combining link curves

generally yields a smaller path curve; in part this is because the throughput of the path is

no greater than the lowest throughput of any link. The curve will also be reduced because

each link’s latency and loss accumulates, further decreasing the number of bits the path

can successfully transfer in a given amount of time. An example of bit-time curve

aggregation for a path is shown in Figure 9.

Figure 9. Aggregating Bit-Time Curves for Links

Yet another interesting feature of this model is the ease of comparing flow or

service requirements against link or path capability. The area under a bit-time curve over

the interval [0, t] represents the bits required or transferred, respectively, within time t.

This means that a flow’s requirements can be compared against a path’s capability simply

by overlaying the integral of one curve over the integral of the other, evaluated over the

time t of interest. In other words,
0

()
t
B t dt∫ where B(t) is a function that describes the

 30

flow’s bit-time curve and t is the time elapsed since the origin of the bits. This process is

depicted in Figure 10. The highlighted region, below the flow curve and above the link

curve, indicates bits that are not received before their value deadlines. If all bits can

transit the network by their deadlines, there will be no highlighted regions.

Figure 10. Comparison of CIR Requirements Against Path Capability

As discussed earlier, the relationship between the percentage of bits that arrive by

their deadline and the “value” of a flow or service is complex and highly context-

dependent. However, lacking a comprehensive analytical framework for each flow and

service type, the highlighted regions can be thought of as detrimental to service value.

The percentage of the total area under the flow curve that is not highlighted may be

applied to a simple utility function specific to the service represented. This would provide

a useful approximation of the value achieved by that service.

Non-linear flow and link properties alluded to above as well as the complex

mapping between individual flows and paths complicates the mathematical relationships

involved in aggregating flows and links and comparing services and paths. The simplified

mathematics presented here only illustrate that this model allows for combining

elemental components of the model into aggregates and comparing those aggregates,

which in itself demonstrates the power of the model to describe network configuration

and behavior. However, follow-on research must be performed to elucidate the exact

 31

nature of these relationships in order to guarantee accurate assessments. Potential

approaches to these challenges, including fuzzy logic and artificial neural networks, are

discussed in the final chapter.

There is now a model for translating human-centric informational requirements

into constituent flows, flow attributes, and finally bit-time curves that represent each

flow’s traffic in a value-deadline context. This model is capable of mapping flow

requirements onto path capabilities to evaluate flow performance, and from this

determine the achieved value of a service. A conceptual view of the translation and

comparison processes is given in Figure 11.

Figure 11. Evaluating a CIR Along a Specified Path Using the Bit-Time Method

 32

Notice that there are two distinct sources of information feeding these processes.

One comes from the user-specified CIR, which ultimately produces the bit-time curves

for each flow. This process is discussed next. The other source, which generates the bit-

time curves for each link, is the measurement architecture discussed in the following

section. Since the specification of flow bit-time curves comes from a disparate process,

the discussion will now turn to the specification of CIRs. Specifically, how a non-

technical user is able to state information requirements in terms of services and flows and

how those statements are translated into the inputs required by the proposed model.

4. Creating the CIR Language

Remaining is the specification of a CIR language based on the parameters

elucidated from this discussion. These parameters are those shown in Figure 3 along with

the essential properties of each constituent flow. The assembled model of a CIR is shown

in Figure 12, and its components are described in the following paragraphs.

Figure 12. CIR Specification Model

At the top level of the model are general requirements for the CIR; these are the

kinds of service-level requirements shown in Table 2. These requirements are the primary

way the non-technical user can specify their needs without having a deep understanding

 33

of the network traffic that comprises their CIR. Service-level requirements act as

parameters that adjust the bit-time curves for each specified flow. For instance, a

hypothetical web browsing service may feature a responsiveness requirement that a web

page loads within 10 seconds. This 10-second parameter would scale the time axis of

each flow’s bit-time curve such that the value diminishes if all bits are not transferred

within that timeframe.

Under the global service level is a description of each constituent flow. There are

three essential components that must be specified for each flow: the path it traverses, its

bit-time curve, and its relationship to the overall value of the service. For networks

without multiple redundant paths between nodes, a flow’s path can be derived from its

endpoints. Network topology discovery mechanisms or human-inputted topological

information can be used to determine the path. Flow curve descriptions may either be

numerical parameters that define the shape of the curve or a classification of the flow

type within a predefined set of curves. For the sake of this research, bit-time curves will

come from defined classes of traffic based on empirically-derived flow characterizations.

Service value relationships are defined by the combination of a utility function which

relates the percentage of bits that arrive on-time to the percentage of flow value achieved,

and a weighting factor that specifies the value of each flow to the overall service. For the

purposes of this research, the utility function is represented by the linear

functionV m P b= × + , where P is the percentage of bits that meet their deadline and V,

the value to the service, is constrained within the range [0, 1] as shown in Figure 13. The

variables m and b are calibrated for the particular flow type.

Figure 13. Utility Function Relating Bit-Time Evaluation to Level of Service

 34

Taken together, these parameters form the fields of a data structure describing one

atomic CIR. For illustrative purposes and as a baseline for testing conducted in the

following chapter, a complete CIR language specification is defined here. There are

technically two CIR data structures, one that represents the input required by the non-

technical end-user, and another that fills in the requisite information to complete the

model shown in Figure 12. Both data structures are presented in XML syntax for the sake

of familiarity. These are presented in Figure 14, applied to the scenario used throughout

this chapter.

Figure 14. CIR Specification in XML

 35

In the completed CIR specification on the right, all attributes from the CIR model

are present. Service-level attributes are given by name and assigned some value; in this

case, an integer on a scale from zero to 100, indicating the importance of that attribute.

As noted earlier, these values may be used as scaling or weighting factors for the bit-time

curves in individual flows. For each flow, the requisite information is provided. In this

presentation of the model, bit-time curves have been pre-classified in their own

taxonomy, and are referenced by name for each flow in the CIR. These types may assume

a specific protocol, allowing a separate protocol field to be excluded. Start and stop times

have been added so that an automated management system may know when CIRs will be

in effect.

The user-required input to the specified CIR is more terse, containing only those

pieces of information both critical to building the complete CIR specification and

knowable to the non-technical user. Service-level attributes have been reduced to a user-

specified “High,” Moderate,” or “Low,” though if an appropriate user interface exists,

numerical values may be derived from user selections. As discussed in the final chapter,

it may be possible to present different service levels in a way that makes appropriate

attribute selections more intuitive.

Flows are likewise simplified, specifying only the remote endpoint and the type of

flow. Again, this alludes to the difference between what the user must know in order to

articulate his or her requirements versus what must be known by the management system

in order to effectively monitor the network. The endpoint and type of flow might be

selected via an interface that allows the user to select service components from a list of

assets and their corresponding capabilities. For instance, the asset named

“uav145.navy.mil” would feature capabilities for surveillance-quality video and camera

control. It may also feature other ISR and control capabilities that this user does not

require. The interface would then translate the user’s selections into specific endpoints,

flow types, and parameters based on the input given. It would also fill in pre-requisite

flows, such as authentication. If desired, the user may be able to make any final

adjustments to the completed CIR before it is submitted to the management system.

 36

Along with the CIR translation process that produces bit-time curves for each

flow, this CIR specification process builds a complete procedure spanning from user

selection of information requirements and service attributes through production of bit-

time curves and configuration information essential to the management system. The two

separate aspects of CIR specification and bit-time curve translation are also made explicit

by this procedure. This is summarized in Figure 15.

Figure 15. Specification and Translation of a CIR

The service specification and evaluation model presented here forms the crux of

the holistic network management model proposed by this research. With the model

established, it is appropriate to discuss how such a model would be implemented. The

remainder of this chapter offers guidance on the architecture and implementation of both

the underlying measurement infrastructure and the user interface and visualization

capabilities necessary to making this model usable in an operational context.

 37

C. MEASURING SERVICE PERFORMANCE

1. Measurement Infrastructure Considerations

Requirements for a holistic management model were described earlier in this

chapter. Two of these requirements directly impact the design of measurement

infrastructure: the management system must yield results in a useful period of time, and it

must not interfere with operational traffic. Underlying both these directives and the

broader technical requirements of such an architecture lay specific requirements which

will be discussed here.

Most techniques for measuring the capability of a network link require generating

and sending test traffic over the link, often in large bursts. The frequency of these

assessments directly and adversely impacts the performance of operational traffic.

Finding ways to utilize minimal amounts of test traffic, or better yet operational traffic

itself, for capability measurement is important for the usability of this architecture. Ideas

for implementing these techniques are presented later in this section.

The collection and processing of measurements is another area that can adversely

affect operational traffic. If, for instance, the attributes of every link and every flow were

transmitted across the network to one central management device once each second,

constrained links could become overloaded by management traffic alone. Distributing

collection to several topologically-scattered devices may mitigate these effects. Each

device could gather measurement from network elements nearby, and summarize those

measurements into the minimal information needed to be sent up to the next tier of the

network. As shown in Figure 16, measurement nodes throughout the network could

report to distributed management nodes, which in turn summarize measurement data and

report to one or more centralized management nodes that collate and process

management data from across the network.

 38

Figure 16. Topologically-Distributed Measurement Infrastructure

Time synchronization, though less obvious, is one of the most critical factors.

Some of the techniques presented in this section require cooperative measurement

between devices. For instance, packets may be captured near the source and near the

destination of a flow, to determine factors such as latency and loss along that flow’s path.

In order to match packets between the two capture points, precise time synchronization is

paramount.

These provide general guidelines for designing the measurement infrastructure.

The following sections describe in more detail the conceptual process of characterizing

both flows and links as bit-time curves. Examples are given to illustrate the basic

methodology; however, the specific tools and techniques are left for discussion in

Chapter Four. Finally, the method of comparing a flow or service against a path and

evaluating the level of service achieved is discussed in more detail.

2. Characterizing Flows with Bit-Time Curves

The proposed model does not perform live analysis of flow traffic to determine

the level of service achieved. Rather, it relies on knowledge of both the flow’s

requirements and the path’s capabilities expressed as bit-time curves in order to perform

a comparative analysis that determines the expected level of service. As such, it is

 39

necessary to have characterizations of each flow type to use in these comparisons. Since

most flow types correspond to well-established protocols, an effective approach to

baselining would be to build a library of known flows and their bit-time characterizations.

This would be an offline process, happening prior to or in parallel with but separate from

live network management operations. These characterizations could then be used for

evaluating levels of service in real time.

As discussed earlier, the bit-time curve for an individual flow represents a

snapshot of that flow at any instant. At any given time, there should exist bits in transit

from source to destination whose value deadlines statistically match the flow’s bit-time

curve. The empirical characterization method builds this curve based on observation of

flow traffic in ideal network conditions. For some flow types, the traffic observed under

these conditions matches exactly the requirements for perfect service. Video streams, for

instance, have strict value deadlines for individual frames of video; a late frame is a lost

frame. Other types may provide more leeway in the arrival times of individual bits. If a

single text chat message takes extra time to arrive, it may be unclear if any value is lost.

In these cases some additional analysis may be required to determine the boundaries for

achieving perfect service.

Consider a simple video stream where each packet contains one video frame.

Each packet is essentially a grouping of bits that arrives at the same time; loss, latency,

and jitter could all be defined for packets rather than individual bits within a packet.

Latency by itself is immaterial unless there are service-level attributes that mandate an

upper bound on it; in plumber’s terms, the length of a pipe does not matter as long as

enough water continues to flow through it. Jitter and loss are more important, since these

cause individual bits to not arrive “on time.” Video receivers often employ a buffer to

compensate for these effects. In the un-buffered case, all bits must arrive by a constant

deadline in order to sustain smooth, clear video. The corresponding curve would have a

single spike at that deadline. Conversely, buffered video can compensate for some

percentage of bits that are late to arrive; the corresponding curve would change to

represent one primary deadline, and a secondary later deadline based on the size of the

buffer. Note that there are no lower bounds on the time at which bits must arrive. Bit-time

 40

curves characterize the “no later than” time for each bit in transit; bits that arrive ahead of

their deadlines have no negative consequences in this model.

One way to empirically characterize a flow is to compare its traffic at both the

source and destination. From this, it is possible to build a distribution of bit arrival times,

which for flow types with little leeway will closely match the bit-time curve required to

achieve perfect service. For flow types that are close to streams, the resulting curve will

likely appear as a spike as described above. For bursty flow types, the curves may be

more interesting, depending on the variation in acceptable arrival times of individual

messages.

Once a baseline exists for a flow type, simple parameterization based on service-

level attributes may be added analytically. As discussed earlier, most service-level

attributes “stretch” the bit-time curve along either the bits or the time axis. Assume the

video stream described above uses frames 100 kilobits in size and has a deadline at 500

milliseconds in un-buffered mode; the bit-time curve will have a spike sized

proportionally to the frame size and centered at that time. If the user wishes to increase

clarity such that 200 kilobits per frame is used, the curve will stretch on the bits axis

accordingly. Likewise, if the user imposes a bound of 75 milliseconds for responsiveness,

the curve will contract on the time axis. However, in both cases, the basic shape of the

curve will stay the same, since the essential relationships within the flow type remain

unchanged.

3. Assessing Link and Path Capability

Similar to a flow’s Bit-Time curve, the curve for a link or path represents the

number of bits that can transit from source to destination over time, starting from the

moment when the bits are sent. Since there is always some latency, the value of this curve

will be zero until the minimum time at which a single bit may have transited.

Throughput, jitter, and loss also affect the shape of this curve.

On the macro scale, the capability of a link or path can be evaluated simply by

sending traffic from source to destination at the maximum possible rate, and measuring

the number of bits that successfully arrive over time. Such a test by its nature would

 41

account for average loss, jitter, latency, and throughput. However, this approach suffers

from two limitations. First, it does not account for variation over time in the number of

bits that are successfully sent; jitter is one important variable that fluctuates on the micro

scale. Second, such an assessment would require the entire link or path to be utilized

solely by test traffic for the measurement period, which violates the requirement of

minimally impacting operational traffic. Hence, it is important to consider assessment

options that adequately capture the capability of the network without adversely affects its

operation. As the proposed formulation of link bit-time curves does not separate each

performance dimension, this study is left for future research; this section focuses on

capability assessment techniques that provide adequate information without negatively

impacting operational traffic.

(Prasad et al. 2003) discusses a number of techniques for assessing network

capacity, or “bandwidth,” assuming only the endpoints of a path may have measurement

capabilities such as specialized software. They categorize measurements into three types:

capacity, the overall capability of the link or path; available bandwidth, the capacity not

utilized by current traffic; and bulk transfer capacity, the effective throughput of a TCP

flow. It also distinguishes between techniques that yield overall path measurements and

those with granularity down to the individual links along the path. Table 3 summarizes

their results.

Metric Link Path
Capacity Variable Packet Size Packet Pair/Train Dispersion
Available Bandwidth n/a Self-Loading Periodic Streams

Trains of Packet Pairs
Bulk Transfer Capacity n/a Emulated/Actual TCP

Table 3. Capacity Assessment Techniques for Links and Paths

Capacity is the metric of most interest to the proposed model, since the goal is to

compare overall requirements of the network against overall capability of the network.

However, capacity also comes with the caveat that most measurement techniques inhibit

operational traffic from transiting the network at the same time as measurement traffic.

Most techniques rely on precise timing of test traffic transiting from source to

destination; operational traffic would interfere with these timings and skew the results.

 42

Jacobson (1997) alludes to this difficulty, and accounts for it using a “min-filter” that

removes variations in bit transit times. This technique does introduce some error; (Strauss

et al. 2003) addresses these issues and presents a new tool called Spruce that is supposed

to be both non-intrusive to operational traffic and more accurate. These tools are not

assessed in this research, but the references provide insight for future implementers of

this model.

For the sake of comparing flow requirements against path capabilities, it would be

possible to simply evaluate each path that bears one or more flows. However, as

discussed in the next section, there is benefit to knowing network capabilities to the

granularity of the individual link. A simple solution would be to use path measurement

techniques for every link and every path; however, a more elegant and holistic solution is

to periodically measure each link, and use the algebra of bit-time curves to build path

assessments. If a path consists of three links, each with its own bit-time curve, those

curves can be aggregated into a single bit-time curve as shown in Figure 9. There are two

main attributes to these curves: the time t at which the first bit arrives, and the constant

bit arrival rate. The former is determined by the latency of each link, and can be

aggregated as Path l
l Links

L L
∈

= ∑ where L represents the minimum possible latency for a given

link or path. This means the time t at which the first bit transits a path is the sum of those

times for each link, which is represented in the bit-time curve by an apparent shift to the

right.

On the other hand, factors such as throughput, jitter, and loss aggregate in a

reductive way. Each subsequent link in a path will at best have no effect on the constant

arrival rate, since path throughput is at best the minimum of all link throughputs and link

losses accumulate into path loss. Jitter is an additional stochastic latency on top of the

constant minimum latency present on a link, so it too degrades the arrival rate of bits. The

exact mathematical relationships between these attributes are complex and will be left for

future study; the tests conducted in the next chapter utilize tools to estimate the bit-time

curves for links and paths.

 43

4. Evaluating the Level of Service

As was discussed earlier, the level of service achieved is a function of both the

requirements of the service and the capability of the path or paths supporting that service.

This boils down to a comparison of each flow against the path carrying that flow,

weighted by some utility function that defines the value of that flow to the overall

service. As shown in Figure 10, the comparison involves integrating both curves and

aligning them in time, such that the total bits required over the period [0, t] can be

compared to the total bits transited over that same period. The comparative area under

these curves reveals the performance of a given flow across a given path.

Bearing in mind that both curves represent relative snapshots in time, the values at

time t show for bits transmitted at any instant, how many are due at time t versus how

many should arrive by time t. This raises the question of how far along the time axis the

two curves should be evaluated. Figure 10 shows a case where at first the requirements of

the service exceed the capability of the path, but over time the path catches up and

exceeds the demand of the service. If the level of service is simply the ratio of

highlighted area to total area under the service curve, the evaluation period chosen will

impact the result. Without extensive experimentation, it is difficult to say exactly how far

the curve should be drawn, but intuition says that it should go as far as the latest-arriving

bit in the flow’s bit-time curve. This will produce a comparison of the complete behavior

of the flow relative to the path carrying it. However, if the curve describes a bursty or

stochastic flow where some bits are required in milliseconds and other are required in

minutes, it may be necessary to limit the range that is evaluated to the point where

majority percent of the flow’s bits are included. This should be part of further study on

this model.

Another interesting design question is whether to perform service evaluations

strictly between flows and their corresponding paths, or to evaluate flows against each

link within the corresponding path. Although path comparisons are useful for overall

service evaluation, a holistic model should also be able to pinpoint specific bottlenecks

and identify the relevant flows and links. This is what gives the network user an

 44

advantage over traditional tools that report only aggregate performance metrics. To do

this, it is necessary to know the capacity of each link, and to map each flow onto its

corresponding links. This process is illustrated in Figure 17.

Figure 17. Mapping Flows onto Corresponding Links

Two flows, S1D1 and S2D2, transit paths between source S1 and destination D1,

and S2 and D2, respectively. The table shows the mapping of each flow onto the

corresponding links Li in its path. Notice that both flows transit L3, indicating that an

assessment of L3’s utilization requires aggregating both flows and comparing that against

L3’s current capacity. If the capacity is insufficient to fully support both flows, not only

will the levels of service for each flow be calculated correctly, it is possible to

systematically pinpoint both the specific links degrading service performance and the

particular flows being degraded. With this information, network users can take action to

correct performance issues, either by adjusting the configuration of the network or by

reducing their own usage, self-prioritizing their traffic in order to achieve the highest

value possible in the given conditions.

D. VISUALIZING THE NETWORK OF SERVICES

The final though arguably most important piece of the proposed model is the

human interface. Once all CIRs are translated, every flow is mapped onto its path and

links, and all measurements are taken, the resulting analysis must be presented to some

decision maker in order for any of this process to be useful. The best representation of

service performance in the world, if not presented in a meaningful way, is of little use for

effective network management. Although this research does not directly investigate the

 45

effectiveness of service visualization, it is important to address this topic as it

significantly impacts the usability of this model. This final section describes some of the

challenges in visualizing a holistic network management model, and presents some

thoughts on how to work toward a usable solution.

1. The Problem of Holistic Visualization

Many approaches exist for visualizing the performance of a network. Some tools

use red-light green-light iconography to indicate whether or not a node or link is

available. Others use gauges or graphs to indicate the amount of traffic transiting a link at

any given moment. Yet others present matrices of source and destination hosts or ports to

represent the patterns of usage on the network. However, very few approaches exist to

present several network metrics simultaneously, let alone alongside representations of

flow- and service-level performance.

One of the difficulties is that each level has its own distinct set of attributes and a

unique topology. At the network level, every computer, switch, and router is an element

in the graph; each of these has performance attributes that affect the overall performance

of the network. At the flow level, most devices fade from the picture, leaving only the

endpoints of specific flows of traffic. Just mapping these two layers together can be a

challenge; adding the services level is an onerous task. As shown in Figure 18, every

layer has a distinct structure that can be difficult to represent in a single view.

 46

Figure 18. Network Topology at Each Layer

Even within a single level, representing all attributes is a challenge. Just three

common attributes such as throughput, latency, and loss would be a challenge to

represent intuitively on top of the network topology depicted above. Perhaps the

thickness of each line could represent throughput, and its length could represent latency.

Loss is a difficult attribute to represent; it might be portrayed by dashed lines versus

dotted lines, or by line color if that was not being used for something else. Already the

obvious physical characteristics are taken, and flow and service performance is not even

considered. It is clear that another direction must be taken to visualize this information.

2. Promising Approaches

Although no tools yet exist to holistically visualize a network of services, there

are some noteworthy approaches already taken. A brief discussion of these may be

insightful toward the design of future visualization techniques.

Etherape (Ghetta and Toledo) is an application- or flow-level tool for visualizing

the amount of traffic transiting between endpoints on a network. It presents all devices,

listed by IP address, in a ring, and portrays each flow as a cone with the top at the source

and the base at the destination. This gives an immediate and intuitive notion of which

devices are sending and receiving the most traffic. The cones are color-coded to represent

different protocols or flow types. Figure 19 shows Etherape running on a network.

 47

Although Etherape is only designed for a single local area network, the architecture could

be expanded using distributed measurement as described earlier to accommodate a larger

internetwork. However, in its current design, it is difficult to align the visual placement of

endpoints with the network topology. It also lacks a way to aggregate individual flow

behavior into composite service behavior, and has no notion of link or path performance.

Figure 19. Screenshot of Etherape (From: Ghetta and Toledo)

Big Brother (Network Uptime) is one of the matrix-style visualizations as

mentioned above. One axis is the set of devices on the network; the other is the set of

services supported by those devices, such as HTTP, FTP, and SMTP. The values within

the matrix are color-coded symbols indicating the availability of each service on each

device: whether or not it is supported, and if it is, whether or not it is accessible at that

moment. Figure 20 shows Big Brother in action. This visualization by itself does not

contribute to holistic performance monitoring; however, if these axes were changed to

CIRs and their constituent flows, or flows and their corresponding links, then a color-

coded landscape indicating performance may yield useful information about the overall

state of the service network.

 48

Figure 20. Screenshot of Big Brother (From: Network Uptime)

Otter (Ma) is the most topologically-focused tool of the three. It combines a

topological view with visual placement based on specified criteria. Figure 21 shows an

example for latency along the paths to several devices. Using visual placement along one

axis as a means of representing data is a novel approach to depicting performance data

while maintaining visual information about the structure of the network. Color-coding of

individual nodes provides an additional dimension of representation. Notice that the

alignment of nodes on the vertical axis obfuscates the topology in a few places; it is

important to consider the effects that each layer of representation will have on the clarity

of every other layer.

 49

Figure 21. Screenshot of Otter (From: Ma)

3. Future Directions

A holistic network visualization tool must be simultaneously informative to the

network user who wants to evaluate the level of service achieved for each of his or her

CIRs and informative to the network administrator who wants to monitor the network and

determine areas that require configuration changes or resource expansion in order to

accommodate users’ needs. It must start with the highest level and report the achieved

quality of every CIR active on the network, and be able to drill down into each flow,

path, and link to provide timely and concise information about the performance and

behavior of the network.

This will likely require a layered approach, where different dimensions of

information may be turned on or off as desired by the user. It is possible that a generic

visualization engine that allows users to create their own customized views, mapping

network and service data onto dimensions of placement, size, shape, and color, would be

beneficial. Within the military domain, geographical information should be available,

enabling the infrastructure to be overlaid on a map; this is especially useful in tactical

wireless environments where devices are distributed across larger areas than would be the

 50

case in a single building or facility. Finally, the user must at all times be able to quickly

ascertain the state of the network, without sifting through disproportionate quantities of

extraneous information. A minimalist approach to user interface elements such as menus

and the ability to access critical information quickly should be driving design goals.

Relating these requirements back to the Bits in Time model proposed earlier, the

aggregation and comparison algebra of bit-time curves should be reflected in the

visualization mechanism. This means both that services and flows must be depicted along

with some graphical representation of their relative network requirements, and that links

and paths must be presented in a way that denotes their relative capacities. Since the

proposed model enables component requirements to be aggregated into composites of

services and paths, it is possible that an appropriate visualization would allow the

network topology to be expanded and collapsed along the same dimensions. A single

node, representing a service and color-coded or otherwise marked to denote the current

level of service achieved, could be expanded into a topology of vertices representing

endpoints and edges representing flows along their distinct paths. These in turn could be

marked similarly to the single service-node in such a way that intuitively presents the

status of each service and each link. In order to achieve the drill-down capability that

enables pinpointing network issues, each level could be expanded, breaking the

composite service level shown at one level into the component service levels of each

piece.

Although stated as the most important aspect of this model, visualization is also

the most briefly treated. This is in part due to the difficult nature of the problem: the

multiple facets that must simultaneously be displayed, the requisite intuitiveness of the

presentation, and the necessary ease of access to information that drives critical network

management decisions. Rather than present an ill-formed solution within this research,

the development of an appropriate visualization is left for future research and

experimentation. The following chapter focuses on the specification and translation

model presented in this chapter, and a preliminary discussion of the specific

measurements necessary for service performance evaluation.

 51

IV. TESTING AND RESULTS

A. OVERVIEW

1. Testing Goals

The previous chapter laid out the requirements for and components of a proposed

holistic network management model. It is necessary to test this model in order to validate

its accuracy and viability. The model’s accuracy is tested to determine if the model

correctly expresses the expected phenomena; specifically whether it satisfies the

functional requirements defined in the previous chapter. Likewise, viability is tested to

determine if the model is feasible to implement and utilize in real-world operations. This

chapter documents preliminary testing of the model, and proposes changes to the original

model based on lessons learned.

These goals stated, only a subset of this model can feasibly be tested within the

scope of this research. Many of the collection and analysis processes are simplified or

performed manually in order to demonstrate the viability of the model and to assess its

accuracy. This initial testing leads to some preliminary conclusions about and revisions to

the proposed model, which are presented throughout this chapter and in the next.

2. Testing Environments

The tests performed on this model are divided into two parts: lab tests and field

tests. These correspond with the testing goals of validating accuracy and viability,

respectively. Lab tests are set up to demonstrate the concepts of the model in simplified

scenarios, in order to test individual aspects of the model. Field tests follow to assess the

usability and utility of the model in a live scenario simulating an operational

environment. The following sections describe the configurations of these environments in

detail.

 52

B. CENETIX, TNT, AND MIO

Testing was conducted utilizing facilities and experiments run by the Center for

Network Innovation and Experimentation (CENETIX) at the Naval Postgraduate School,

which is directed by Dr. Alex Bordetsky. Established in 2004, CENETIX conducts

research into emerging network technologies as well as models of networking and

collaboration. CENETIX supports two field experimentation programs on a quarterly

basis: the Tactical Network Topology (TNT) at Camp Roberts, California, which is

conducted in cooperation with U.S. Special Operations Command (USSOCOM) and

directed by Dr. David Netzer at the Naval Postgraduate School; and the Maritime

Interdiction Operation (MIO) experiment in San Francisco Bay, which is conducted

jointly with Lawrence Livermore National Labs as well as other joint and coalition

defense agencies. The MIO program is led by Dr. Bordetsky.

C. LAB TESTING: CHARACTERIZING FLOWS AND LINKS

1. Test Environment

The initial lab test environment was as shown in Figure 22. It consisted of data

sources, in this case video streams; one data receiver; a network link emulator; and traffic

monitoring systems. It also included a time server for synchronizing data capture on the

monitoring systems; this was to enable easy comparison of traffic near the sender versus

the receiver. The primary flow of traffic is designated in the figure with bold arrows.

For the first test, the goal was to assess a basic data flow traversing a simple

network. Streaming video was chosen for the flow type since it uses a single socket

connection and should have a simple bit-time curve, as opposed to complex, bursty, or

stochastic flow types such as web browsing and text chat. Two video sources were to be

used: a Pelco (Pelco Corporation) network video server attached to a live camera and a

pre-recorded video served via VideoLAN media server software (VLC Team). Pelco

video is accessible via a webpage, and is available either as MPEG-4 or an MJPEG-like

“Server Push” mode. The pre-recorded video is accessible via the VideoLAN media

player, and is available in several streaming video formats.

 53

The network link emulator was introduced to create artificial constraints on

network resources. This would enable testing the performance of the video under varying

conditions, such as with increased latency, jitter, and loss, or decreased throughput. These

tests used the NIST Net (NIST Net) network emulation software, running on a small

form-factor Linux device. The device was set to act as a router, enabling network effects

to be applied to traffic passing between the subnets on either side of the device. This

device also featured a third network connection, used solely for managing the device and

configuring the emulation settings.

Figure 22. Initial Lab Test Environment

Traffic monitoring was performed using Wireshark (Combs). This enabled full

traffic capture for subsequent quantitative analysis, as described in the following sections.

2. Characterizing Video Flows

The first test was performed with the Pelco video server using “Server Push”

mode over a TCP connection. Early traffic analysis revealed that this mode used

continuous HTTP GET requests initiated by the receiver for a JPEG still image resident

 54

on the server; the effective frame rate of the video was bounded by the rate at which the

client could execute HTTP transactions against the server. This led to very low frame

rates, less than one frame every three seconds in some cases, which was not an acceptable

baseline for performance comparison. It was also realized that the cycle of HTTP

transactions would create a more complex flow to characterize than an actual video

stream.

At the same time, another problem was discovered. The time synchronization

relied upon to assist in aligning sender’s and receiver’s traffic captures was not providing

sufficient precision to accurately align the data. Every captured packet is timestamped;

these times were to be used to determine the time between each packet’s origin and its

arrival, thus establishing the effective bit-time curve for that flow under given network

conditions. Data collected from the first test showed packets arriving at their destination

before they were sent. Subsequent repeat tests and alterations to the time synchronization

configuration did not yield any improvements. It became necessary to determine an

alternative method of aligning packets in time.

Figure 23. Simplified Lab Test Environment

Given these difficulties, the network topology was further simplified and the

VideoLAN video server replaced the Pelco device. The simplified network is shown in

Figure 23. MJPEG video over a UDP connection was chosen for the flow as this

maintains an approximately constant bit-rate. Also, because the video does not use

temporal compression and because UDP offers no traffic control, data loss at any moment

 55

should not affect subsequent frames, and the sender will continue to transmit at a given

bit-rate throughout the stream. Finally, the client was set up to not buffer video before

playback; this would intensify the effects of adverse network conditions.

To form a baseline characterization, certain network conditions were chosen to

represent the ideal case. The emulator was configured to add 50 milliseconds of latency

to all traffic in both directions, but not to constrain the network in terms of throughput,

jitter, or loss. This is comparable to a lightly- to moderately-loaded wired internetwork,

and is on the same order of latency as traffic traversing long distances across the Internet.

The effective latency between the two endpoints was verified using the ping utility, as

shown in Figure 24. An average round-trip time of 100.7 milliseconds corresponds with

50 millisecond latency in each direction plus minute processing and queuing delays

introduced by each device through which the packet passes.

Figure 24. Round-Trip Time as Determined by the Ping Utility

The premise that enables this baseline characterization is that, for un-buffered

video, there is no leeway for adverse network effects if perfect service is to be achieved.

Without a buffer, any jitter, loss, or other effect that inhibits packets from arriving at a

constant rate and in the correct order will cause noticeable defects in video quality. In

other words, the bit-time distribution observed when the video is at peak quality is

exactly the bit-time curve required to achieve that quality. To find this curve, traffic

captures were taken on both the source and destination devices, and those captures were

compared statistically to find the distribution of packet transit times. Using traffic

 56

captures exported from Wireshark and a simple text-processing script, the transit time for

each packet was tabulated as shown in Table 4.

Source Time Checksum Destination Time Checksum Absolute Delta Adjusted Delta
21:01.361 0x4ecb 21:00.739 0x4ecb 00:00.622 00:00.051
21:01.365 0xf60d 21:00.742 0xf60d 00:00.623 00:00.050
21:01.369 0x23c7 21:00.746 0x23c7 00:00.623 00:00.050
21:01.373 0x7aaf 21:00.751 0x7aaf 00:00.622 00:00.051
21:01.376 0xc577 21:00.753 0xc577 00:00.623 00:00.050

Table 4. Sample Packet Transit Times from Baseline Test

The source and destination times are the absolute times reported by the respective

traffic captures. Notice that the destination times predate the source times, giving rise to

the synchronization problems discussed earlier. Checksums are codes used in packets to

verify the integrity of the packet from source to destination; they are based on the content

of the packet, so it is unlikely for two consecutive packets to have the same checksum.

These were used to align the messages from the source capture with those from the

destination capture. The absolute delta column shows the absolute value of the difference

between the source and destination. Since these are known to be inaccurate, it was

necessary to devise a method of adjusting the deltas. The adjusted delta column uses the

average absolute delta and the observed round-trip time from Figure 23 to calculate the

adjusted delta. The formula for this is
2Adj Dst Src Abs

RTTD T T D= − + + . As shown in Table

4, the adjusted delta values are on the order of the expected 50 milliseconds, though

individual packet variations are preserved. The distribution of packet transit times,

zoomed into the peak region, is shown in Figure 25.

 57

Figure 25. Distribution of Packet Transit Times

As predicted in the discussion from the previous chapter, un-buffered video in a

low-jitter network forms a tight spike around the average latency of the path; in this case,

just over 50 milliseconds. Interestingly, there is a small secondary bump just more than

one millisecond later. Even without a buffer, video performance was without noticeable

blemish even with some packets arriving slightly later than the bulk of the flow.

It turns out that this curve should have the same shape as the bit-time curve for

this flow. In order to correctly express the bit-time requirement of the video, the area

under the curve by any arbitrary value deadline must equal the number of bits that must

transit within that period of time; this adjustment simply requires multiplying by a scalar

that represents the bit-rate of the flow over that time period. To determine this quantity,

the average number of bits arriving over the period from the earliest arrival to the latest

arrival on the curve in Figure 25 is determined from captured traffic. The area under the

curve is then adjusted to match the result. From the traffic capture, the average bit rate is

known to be 1,408,070 bits per second. If this amount of traffic were spread over

millisecond intervals, it would be 1,408 bits per millisecond. Applying that rate over the

arrival time distribution produces the curve shown in Figure 26.

 58

Figure 26. Bit-Time Curve for MJPEG Video Stream in Lab Test

3. Characterizing Link Capacity

The factors that affect a bit-time curve representing link capacity are the minimal

or average link latency and the effective throughput of the path over time. Latency

determines the time t at which the first bit arrives, and throughput determines the value of

the curve on the bits axis after time t. These factors are illustrated in Figure 27.

Figure 27. Mapping Network Factors onto Link Bit-Time Curve

 59

Any appropriate network capability measurement technique can be used to find

this curve. In-depth discussion of measurement methodologies is presented in the

previous chapter; for this testing, a simple emulated traffic test using Iperf (Tirumala et

al.) was used to determine capability. Iperf sends a specified rate of traffic from a given

source to destination for some period, evaluating the effective throughput, jitter, and loss

of that transfer. A simple ping can be used in addition to determine link latency. For the

sake of simplicity, Iperf was run across the entire path rather than for each link. The

results are shown in Figure 28.

Figure 28. Results of Iperf Path Measurement with 100 Megabit-per-Second Traffic

The effective throughput, or “bandwidth,” shown takes jitter and loss into

account; otherwise it would be necessary to analytically account for those effects. It is

also important to note that for these tests the attempted bit-rate was 100 Megabits per

second, which is the theoretical maximum speed of the Fast Ethernet links used; some

loss is expected as this exceeds the actual speed of the path. From the results shown in

Figure 24, the latency is known to be approximately 50 milliseconds. In order to

represent the bit-time curve, the effective throughput in bits per second must be spread

over the area under the curve for that time period; this is given by bps
Interval

T
T

t
= . It is

important that ∆t is identical for the flow and the link or path. For this case, the

granularity is in milliseconds, so 0.001t = . This gives the path bit-time curve shown in

Figure 29.

 60

Figure 29. Bit-Time Curve for Path in Lab Test

4. Accuracy of Service Description and Prediction

If the bit-time curves depicted in Figures 26 and 29 were compared using the

method described in the previous chapter, the path curve should exceed the flow curve,

since the performance of the flow was considered perfect. This is depicted in Figure 30.

Figure 30. Comparison of Flow and Path Bit-Time Curves

Notice that the scale of this graph is logarithmic; the path bit-time curve exceeds

the flow bit-time curve by at least half an order of magnitude at any time. This

 61

corresponds with both the observed performance of the video and the captured data. The

data indicated that the video required an average of 1.4 Megabits per second versus the

measured path throughput of 38.2 Megabits per second. This appears to demonstrate that

the model accurately describes both flows and links, providing valid results for a known

case.

The other necessary test is of the model’s predictive capabilities. For an altered

set of circumstances, such as a diminished path capability, the model should predict a

drop in service level. Two cases were tested: first, the path latency was increased from 50

milliseconds to 75 milliseconds; second, a five-second jitter was added to the 50-

millisecond constant latency. In both cases, the video was observed and perceived quality

is known. The test is of how well the model predicts the relative service levels in these

cases.

In the case where the latency was increased to 75 milliseconds, the effective

throughput should have remained the same, but the path bit-time curve should effectively

shift to the right due to the greater path latency. The observed throughput from an Iperf

was 38.1 Megabits per second, approximately the same as the first test. Figure 31 shows

this bit-time curve.

Figure 31. Path Bit-Time Curve for 75 Millisecond Latency

 62

Comparing this curve with the flow’s bit-time curve revealed the first discrepancy

in the model. If the two curves were directly overlaid as shown in Figure 32, it would

appear that there is a large deficiency in service performance with the link curve lagging

far behind the flow curve; however, the observed video was of high quality, albeit with a

slightly higher latency. This elucidates the point that some deficiencies determined by the

bit-time comparison method predict or describe noticeable quality defects, while others

predict or describe service-level deficiencies such as latency that may not be noticeable to

the user.

Figure 32. Comparison of Flow and Path Bit-Time Curves

In the second case, where five milliseconds of jitter were added to the constant

50-millisecond average latency, visible defects in video quality were apparent. The Iperf

measurement is shown in Figure 33; due to technical issues with the computers used, this

measurement was done subsequently with different computers. Although the effective

throughput shown was actually higher than those in the baseline and first test cases, it can

be considered analogous for the purposes herein. A marked increase in jitter is observed,

though the throughput has increased and the loss has decreased due to the change in

environment.

 63

Figure 33. Results of Iperf Path Measurement with Jitter Added

Observing the video stream, there was noticeable frame loss as well as the

introduction of artifacts in most frames, significantly obscuring the video. Interestingly,

the path bit-time curve for this case does not predict these effects. Based on a ping test,

the average measured latency was still 50 milliseconds, and the effective throughput

should have been sufficient for the video. The only telltale sign that performance was

degraded was the message in the Iperf results indicating that over 83 percent of packets

were received out of order. For UDP video streams, packet arrival order is extremely

important to video clarity; the introduction of stochastic jitter to a steady flow of data

could easily cause this phenomenon and lead to quality defects. This was not reflected in

the path bit-time curve or the bit-time comparison, which would look nearly identical to

those in Figures 29 and 30, respectively. It is clear that there are additional performance

factors the current formulation of link and path bit-time curves does not take into

account. Possible revisions to the bit-time curve model will be discussed in the

conclusions.

D. FIELD TESTING: ABILITY TO ARTICULATE SERVICES

1. Overview

The previous section tested the ability of the Bits in Time model, formulated as

bit-time curves for flows and links, to describe and predict service performance for basic

cases. This section complements that testing with a brief study of the ability of the CIR

specification language described in the previous chapter to adequately specify actual

information requirements or services that might be required in an operational

environment. Due to the conceptual nature of the proposed model and the lack of existing

 64

CIR monitoring tools, this section reports the results of a conceptual study done based on

the network and application environment present in the Maritime Interdiction Operation

(MIO) experiment conducted in September 2007. Although quantitative results were not

attainable, the exemplar cases presented here portray actual services as understood from

MIO experiment data.

2. MIO Experiment Network

MIO experiments are conducted in the San Francisco bay area, utilizing Yerba

Buena Island (YBI) as a base of operations and local police and U.S. Coast Guard vessels

for the maritime experiment platforms. The purpose of MIO experiments is to test ship-

to-ship and ship-to-shore network technology along with collaborative information-

sharing applications toward the end of increasing the speed of decision-making in

maritime threat scenarios. These scenarios involve ships carrying suspect personnel and

cargo approaching a port city, and the interdiction process that ensues. Various means of

collaboration, including text, voice, and video, are combined with network-enabled

radiological and biometric sensors to enable faster and more effective sharing of data

between boarding personnel on the ships and subject matter experts on land.

From a physical network perspective, the MIO network consists of a backbone of

broadband wireless links stretching across the bay area, ultimately tying into Internet

connections at Lawrence Berkeley National Labs and Coast Guard Island. These sites

also provide Virtual Private Network (VPN) tunnels back to NPS, and via NPS to several

other partner organizations within the U.S. as well as in foreign countries including

Sweden, Austria, and Singapore. During the September experiment, the primary

operating areas were inside the bay and directly outside the Golden Gate Bridge, where

teams on two interdiction vessels boarded respective target vessels to perform mock

searches for radiological materials and suspected terrorists. An additional operating area

on Mare Island, simulating riverine operations, was added for the first time. A high-level

view of this infrastructure is provided in Figure 34.

 65

Figure 34. MIO Experiment Network Topology (From: Bordetsky et al. 2007)

From an applications perspective, the MIO focuses primarily on collaboration and

information-sharing tools. Some of the desired information types include text chat, voice

calls, live video, file sharing, and text-based discussion groups. Each of these functional

capabilities is supported by one or more collaborative applications used within the MIO

experiment. These tools connect the boarding parties that are performing the detection of

nefarious cargo and persons with decision-makers and analysts on shore who can assist in

processing the data collected throughout the interdiction experiment.

The specific information requirements dictated by each participant in these

scenarios determines the set of CIRs that must be articulated to a holistic network

management system in order to effectively monitor the services present and needed on

during the interdiction. Two of these CIRs were chosen as exemplars for study. The first

is Microsoft Groove, a collaboration tool that enables chat, file sharing, discussion

groups, and many more information sharing mechanisms. Second is the set of live video

feeds that provide real-time awareness to decision-makers away from the interdiction.

Both of these are discussed in greater detail in the following sections.

 66

3. Exemplar Case 1: Collaboration Suite

Groove (Groove Networks) is a collaboration suite designed to provide a virtual

office environment for geographically-distributed teams. Each team may create one or

more “workspaces,” each of which constitutes an atomic collaborative space. A

workspace may include a combination of collaboration and work management tools, such

as task managers, discussion groups, file sharing, and group-wide text chat. Groove also

provides a presence mechanism to inform a user of whom else is online or current using

their workspace, and an individual-to-individual text messaging system. A screenshot of

Groove in use during the September MIO experiment is given in Figure 35.

Figure 35. Groove in use during the MIO experiment

The underlying communications model utilizes both client-server and peer-to-peer

channels to relay messages and updates to the virtual workspaces; each client

synchronizes its current version of the workspace based on the latest updates from other

members’ workspaces. Although each user’s current snapshot of the workspace is

available offline, in order to maintain a synchronized state and to receive new text

messages, both channels of connectivity must remain open. Therefore, Groove is an ideal

 67

candidate for study in terms of a CIR: it consists of several underlying flows, each with

its own parameters and requirements. An example of this topology is shown in Figure 36.

Figure 36. Groove Service Topology

Presume that the CIR for collaboration via Groove is to be defined for the user at

YBI. The user must define a CIR that accurately describes both the service-level

attributes and the flows required to achieve the desired collaboration. Relevant service-

level attributes in this case would be reliability and responsiveness: reliability in terms of

ensuring all updates to the workspace arrive, and responsiveness in terms of all updates

arriving in a timely manner. Due to the nature of this service, reliability is a strict

requirement; any bits that are lost are a detriment to the level of service. However, bits

that are late may or may not negatively impact the level of service, depending on the

user’s need for those particular bits. For instance, an update to a shared file that the user

does not need does not have a responsiveness requirement, but a single text message sent

to that user containing urgent information may have very stringent responsiveness

requirements. This may pose a challenge to describing the service with a single CIR.

Suppose that all workspace synchronization occurs via the client-server

connection and has moderate responsiveness requirements. This means that all shared file

updates, discussion group posts, and task manager status changes would be sent by the

individual clients to the server, and then propagated to all other clients. In contrast,

 68

suppose all individual-to-individual messages are sent peer-to-peer and have high

responsiveness requirements. In this case, the flows may be distinguished by different bit-

time curves; however, the challenge of unifying service-level attributes remains. Figure

37 depicts the user-required CIR inputs for this service.

Figure 37. User-Required CIR Inputs for Groove Service

Assuming a translation mechanism as described in the previous chapter that can

fill in the exact endpoints and service- and flow-level numerical variables, this should

form a complete description of the Groove service. It depicts flows to each client for

peer-to-peer traffic and a single flow to the server for workspace updates. The latter flow

type is assumed to fall within the broader category of record transfers, much like an

HTTP or DNS request: every time content in the workspace is updated, updates will be

propagated to each client and acknowledgement of receipt will be returned. Since

service-level attributes are scaling factors applied to each flow, this may be a sufficient

description. However, one remaining issue is the complete enumeration of peer clients. A

single Groove workspace can accommodate dozens of users, and users may be added to

the workspace at any time. This being the case, a CIR that accounts for all Groove-related

 69

traffic would itself have to be dynamic in order to describe all possible flows over time. It

may be necessary to add a capability to this model to express a generic flow that does not

have an explicit remote endpoint, but rather that expresses a bit-time curve that is the

composite of a group of flows.

4. Exemplar Case 2: Live Video

Part of achieving situational awareness between geographically-separated sites

within the experiment involved establishing live video links between each participant.

Boarding parties with portable cameras fed video into online conference rooms so that

decision-makers could see their live progress and gain a better understanding of the

situation as it developed. Likewise, the command center posted its video along with

several remote sites such as Sweden, enabling each participant to have improved

awareness of the overall operation.

Figure 38. Video Sharing Tools

The two primary mechanisms used for video sharing were Pelco devices and

internally-developed web-based virtual video conference room software; both are shown

in Figure 38. Pelco devices were accessed directly via a webpage and used HTTP-

encapsulated video streams. The conference room tool was centralized on a single server,

which acted as a relay between senders and receivers. It too was accessed via HTTP, but

 70

in this case the video was sent in Flash video format. This created a complex network

structure ideal for study, a subset of which is shown in Figure 39.

Figure 39. Video Service Topology

Although each video feed might comprise its own CIR in a real-world operation,

this discussion assumes that the CIR is operational awareness in the form of live video of

all participating sites. The service-level attributes of this CIR are uniform across all video

streams to comply with the CIR specification model. As discussed in the example from

the previous chapter, this CIR contains implicit flows that will not become stated until the

user-inputted CIR is translated by the specification interface. For instance, both the Pelco

and the video conference video feeds are accessed via web pages. It is not clear from the

CIR shown in Figure 40 that these implicit flows exist. The flows from cameras to the

video conference server are also implicit. Ideally, the flow type taxonomy would carry

with it knowledge of these dependencies. Mapping flow dependencies and creating a

taxonomy of flow types may be a suitable sub-topic for future research in this area.

 71

Figure 40. User-Required CIR Inputs for Video Service

Since the example flow types used here are categorized by function and not by

protocol, it is not clear that two of these video feeds are sent in higher-quality MPEG-4

video format and two are sent in lower-quality Flash video format. This makes a

significant difference to the network management system as each protocol has its own

resource requirements and thus different bit-time curves. It is unclear whether revising

the taxonomy to specify the protocol is the better answer, or if an additional field in the

translated CIR specification is needed to articulate this. Finally, like in the Groove

example, it is possible for the number of clients in the video conference room tool to

change over time. This reinforces the need to be able to articulate generic flow groups or

classes that scale based on the number of active flows at any time.

E. FURTHER EXPERIMENTATION

The testing documented in this chapter raised several questions about the

proposed model. Lab testing exposed uncertainties regarding the characterization of

complex flow types and the assessment of flow performance in varying network

conditions. Other challenges arose during the field testing, including combining widely

varying flow types in a single CIR, sets of flows within a single service that change over

time, creating a taxonomy of flow types that adequately describes differences between

 72

similar protocols, and hidden dependencies between flows. These unanswered questions

form starting points for future experimentation on the proposed model.

Future experiments might be categorized into two parts: Bits in Time model

validation and refinement, and CIR specification validation and refinement. The model of

characterizing, aggregating, and comparing bit-time curves requires further study to

validate its accuracy in various conditions. Characterizing more complex flow types may

expose areas of improvement to the model, simultaneously building the library of known

flow types. Likewise, the CIR specification model should be tested in different

environments and stretched to its limits, so that a refined model will emerge that has

superior expressive capability. Taken together, these improvements should enable the

proposed model to be a useful tool for holistic network management.

 73

V. CONCLUSIONS AND FUTURE WORK

A. MAJOR CONCLUSIONS FROM RESEARCH

In an era of ever-increasing networking capability, both in terms of information

available to the user and of resources available to carry that information, new ways of

managing networks are becoming critical to day-to-day operations and to maintaining

information superiority in the face of new threats. Traditional approaches that focus on

delivering perfect service to a limited number of users over a fixed set of network

resources cannot handle the imminent emergence of network-centric applications that

operate in frequently imperfect conditions. Dealing with less than perfect service quality

and managing a network where the set of available resources change on the order of

minutes, not months, is the emerging business model for network operations in the

tactical environment.

The aim of this thesis is to illuminate this issue and address the concept of holistic

network management in a tangible, graspable way that can form a basis for further

research in this burgeoning field. A model is presented that connects the highest level

concept of a user-articulated service with the lowest level concept of bits with deadlines

traversing the network. This model describes a concrete language for depicting a user’s

critical information requirements in terms that the user can understand, while still

maintaining the descriptive elements critical to managing and monitoring those

requirements. At the same time, it provides an algebra for expressing the atomic elements

of the network configuration, flows and links, in terms of a single descriptor, and for both

aggregating and comparing those descriptors in a way that allows assessment of the

overall level of service.

It is clear that the work is far from finished. The specification of CIRs is

rudimentary and requires improvements to address the issues raised in the previous

chapter. Likewise, the bit-time curves proposed do a proficient job of articulating certain

kinds of traffic requirements, but are not yet suited to many types of flows. The

relationship between certain network effects and their corresponding curves also requires

 74

clarification. However, the capacity of the model to express high-level requirements in a

way that could be translated into lower levels and simultaneously to measure low-level

metrics and generate a higher level assessment shows that this model has interesting

properties that merit further study.

B. DIRECTIONS FOR FUTURE RESEARCH

This research work presents a framework for tying distinct flows of data together

into user-oriented services, and for comparing network requirements of those services to

the capability of the network infrastructure that carries those services. Many new

concepts are introduced, including the mapping of service-level requirements onto

network attributes, the Bits in Time model of network performance, and various

measuring and visualization techniques. Each of these areas exposes additional topics

open to future research work. Some of these topics are illustrated below for the

consideration of those wishing to pursue further research in this area.

1. CIR Translation and Evaluation Frameworks

Although this research offers an interesting, if not novel, approach to describing

and computing network performance, it leaves unresolved many of the difficult

mathematical relationships involved in the algebra of bit-time curves. Other branches of

mathematics and computer science may be incorporated into this model to address these

challenges. One example is the application of fuzzy logic to network and service

performance. (Zhang and Zhu 2005; Yaghmaei et al. 2006; Wang et al. 2006) all describe

applications of fuzzy logic to QoS problems; it could also be formulated as “fuzzy” levels

of service based on “fuzzified” network attributes. Essentially, fuzzy logic is a branch of

mathematics that extends the notion of set theory by allowing a single entity to have

partial membership of multiple sets. In other words, it is possible to have somewhat high

bandwidth and simultaneously mostly medium bandwidth; the amount of latency partially

belongs to both the high and low sets. Figure 41 illustrates the membership function for a

fuzzy variable; this is adapted from an example given in (Crnkovic-Dodig).

 75

Figure 41. Examples of Fuzzy Membership Functions

There are two primary components and four main steps to a fuzzy logic problem.

One component is the collection of membership functions for each input and output

variable; the input variables are shown in Figure 41. The “crisp,” or exact, values of

throughput and latency are “fuzzified” into partial memberships of each fuzzy set during

the first step of the process. Although the mapped fuzzy values are normalized in this

example, normalization is not a requirement for fuzzy math. The other component is the

set of rules for mapping input variables onto output variables, which are used during the

evaluation step. Rules are standard “if-then” statements that map input sets onto output

sets. The set of rules is shown in Table 5.

1. If Throughput is Low, then Performance is Poor

2. If Throughput is Medium and Latency is High, then Performance is Fair

3. If Throughput is High or Latency is Low, then Performance is Good

Table 5. Fuzzy Rules

 76

Take the second rule; this uses two input variables to compute the output. In fuzzy

set theory, “and” means to take the minimum of the two inputs, whereas “or” means to

take the maximum. So in this case, since ThoughputMedium = 0.7 and LatencyHigh = 0.4,

PerformanceFair = Min(0.7, 0.4) = 0.4. Unlike rigid rules, where only the first or closest

match is evaluated, all fuzzy rules are evaluated and then aggregated, as denoted by the

highlighted region in Figure 42.

Figure 42. Aggregation of Evaluated Fuzzy Rules

Of course, finding this region does not by itself provide actionable information.

Computers and humans alike operate best with something quantitative. In the final step,

techniques such as taking the center of mass of the highlighted region are used to

estimate the “crisp” value of each output variable.

An interesting piece of research would be to apply a fuzzy model of service to

complement the Bits in Time model, and compare the projections against user

perceptions of service. Like the Bits in Time model, fuzzy logic provides an attractive

algebra for expressing multiple dimensions of network attributes. It is not clear how

service requirements would be compared against network capability; defining such a

comparative technique would itself be an interesting piece of work, possibly drawing on

other related applications of fuzzy logic (Zhang and Zhu 2005; Yaghmaei et al. 2006;

Wang et al. 2006).

Another relevant technique taken from computer science is the application of

artificial neural networks and case-based reasoning to treat the complex relationships

between bit-time curves as patterns with outcomes that can be learned. Bordetsky et al.

(2003) discuss the introduction of feedback controls and case-based reasoning memory

 77

into QoS-enabled multimedia networks. For instance, in networked teleconferences there

is a Call Preparation Control mechanism that establishes the quality of connections

during a teleconference session. In their paper, this mechanism is equipped with a case

memory to learn from previous sessions how to recognize and respond to certain

configuration patterns in order to achieve the best possible level of service. Applied to

CIR translation and evaluation, these techniques may enable the holistic management

system to recognize certain combinations of flow types, or certain network effects, and

apply known patterns to the aggregation and comparison of bit-time curves. This might

be tested in a way similar to that proposed above for fuzzy logic.

2. Tools for Selecting Service Quality Levels

Even with a hierarchical model that defines service-level attributes abstracted

from the network level, asking a user to define their requirements in terms of clarity or

reliability is difficult. Experience can help by providing templates for certain services in

certain operational contexts, but there is still room for a friendly user interface for

specifying these requirements. Imagine an intelligence imagery feed; live pictures of a

monitored site with known high-value targets are fed across the network to a remote

command center. Although having high-resolution fast-updating imagery would be

anyone’s desire, the acceptable minimum level of service depends on the usage of that

imagery. For instance, will it be necessary to identify any of the entities in the image,

such as people or vehicles? Is it more important to know the fact that a person entered or

left the building, or is important to see which direction they walked to get in or out of it?

 78

Figure 43. Criteria for Varying Quality of a Video Stream

As shown in Figure 43, different levels of service allow the user to see different

things, and there is a cost associated with each level according to the network resources it

consumes. It may be useful to build a user interface that presents multiple versions of a

particular service, depicting both the difference in quality and the cost of each version. If

the cost is portrayed in terms that matter to the user (e.g., ability to support their services

as well as conduct conference calls, et cetera), such a tool may be useful in convincing

users to select reasonable vice best case settings. This tool could be defined for different

types of service, calibrated to users’ needs in a variety of contexts, such as surveillance,

command and control, collaborative communications, and so forth.

3. Improving Measurement Techniques

There is a lot left to be done in this area. This research proposes the infrastructure

for measurement, but leaves many aspects open-ended. One area of contribution is

network topology discovery. All experimental work done herein required a priori

knowledge of every link in the network. In future network-centric operations, the task of

mapping every link within a single, highly-mobile unit, let alone the complex

interconnections between joint and coalition forces, would take a heroic effort.

Offloading this task onto autonomous distributed agents that scan the network, noting

both topology and performance characteristics, would greatly accelerate the process of

calibrating the service performance model to the network at hand. There are many

existing protocols and techniques for general-purpose and task-specific network

 79

discovery. Cisco Systems uses their own discovery protocol for finding the connections

between switches and routers; many routing protocols can automatically converge a large

set of interconnected routers into a coherent routing tree. Evaluating and synthesizing

techniques for this application is a necessary task for making holistic network

management feasible in real-world networks.

Accurate measurement of link and path performance attributes is another area

worthy of further study. As pointed out in (Prasad et al. 2003), there are a variety of

techniques for measuring network capability, each with its own level of accuracy and cost

in network transmissions; however, some measurements, such as per-link available

bandwidth, are still elusive. Many network characteristics can be measured for an entire

path, or per link, just using the path endpoints. Certain per-link measurements can only

be assessed by agents installed at intermediate routers. Determining the minimal set of

measurements necessary to determine the capability of the network, and defining the

appropriate measurement infrastructure, is a useful research task.

The proposed model was created with certain kinds of services in mind, such as

surveillance video and text messaging. These services utilize flows that are either

constant, or statistically periodic. Other services consist of complex sets of flows that are

difficult to express with the Bits in Time model and other similar methods. The Groove

office collaboration tool, which is used heavily in TNT and MIO, is a good example.

Groove is centered on the synchronization of files, discussion boards, whiteboards, et

cetera between individual instances of the application. The network requirements are

entirely dependent on the user activity within each instance of the Groove workspace,

making a statistical description very difficult. Services where the service-level quality

attributes change frequently or depend heavily on the specific sub-task at hand are also

difficult to depict with such models. Testing the Bits in Time model with these types of

services and extending the model as needed adds versatility to the technique.

4. Visualizing Service Performance

The best network management model in the world is not very useful to users if all

they have to look at are lists of number without any meaningful context. Creating a

 80

graphical interface that portrays service performance in a way that is both meaningful and

actionable is arguably just as valuable as the management model underlying it. Current

representations of network state and performance focus on network reach and link

utilization. Reach is often represented with red-light, green-light indicators, either in a

listing of important nodes or overlaid on an image depicting the network topology.

Solarwinds (Solarwinds) takes this approach. Link utilization is generally portrayed via

speedometer-like graphics, or maybe color-coding applied to links in a graph that

illustrates the network.

However, when the important data are performance metrics for services between

many machines across a complex network, with each endpoint having many connections

to other endpoints, and each type of flow running between several pairs of endpoints

simultaneously, portrayals using meters and color-coding are hardly sufficient. The

prototype interfaces used for testing in this thesis are only meant to demonstrate the kinds

of data that would be used by the proposed management model. There is a whole thesis

worth of research to be done strictly on how to graphically represent a network of

services, each of which contains one or more flows with their respective network

performance characteristics.

5. Service Adaptation

Raising the level of network management from a bits-focused view to a services-

focused view is a major step toward holistic network management. Once the ability to

monitor services exists, the next logical step is to apply this newfound service awareness

to intelligent management of network resources. Adaptive networking is a field of study

that focuses on adapting both the network configuration and individual flows in order to

achieve a state of acceptable performance for every user on the network.

An overview of adaptive networking is presented in (Clement and Bordetsky

2006). Adaptive networking approaches vary, but generally fall into categories. First,

there are techniques that focus more on adapting flows to match available network

resources by gracefully degrading their quality. For instance, the resolution or frame-rate

of a video feed may be reduced so that the network requirements of the flow are within

 81

the available capacity of the network path. Other approaches focus on adapting the

behavior of the network to better accommodate the requirements of the services present.

This may involve combining similar flows along the same path into one flow that meets

each flow’s demands, such as two requests for the same video, but each with different

resolution requirements.

Adaptive networking techniques may also be categorized by the level of

involvement on the part of the applications and the users. Some approaches are

application-aware; that is, the application itself negotiates with the network for resources

and adapts its behavior according to the resources allocated to it. Application-transparent

approaches provide the same functionality, except that network agents negotiate on

behalf of the applications, and adapt application traffic in a way that is “transparent” to

that application. Human-aware techniques place users in charge of making decisions

about their own usage, informing them of the constraints of the network to provide them

with services.

A study of these approaches, and the benefits of combining these with holistic

network monitoring techniques, would take network management to a new level,

enabling users to specify their needs and allowing the network to intelligently manage

and provide the best possible service even when all requirements cannot be fully

satisfied.

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

LIST OF REFERENCES

Alberts, David S., John J. Garstka, and Frederick P. Stein. 1999. Network Centric
Warfare: Developing and Leveraging Information Superiority. 2nd ed.
Washington, DC: CCRP Publications.

Barford, Paul, et al. 2001. On the Marginal Utility of Network Topology Measurements.
Paper presented at the 1st ACM Special Interest Group on Data Communications,
November 1-2, in San Francisco, USA.

Bauer, Ben and Andrew S. Patrick. 2004. A Human Factors Extension to the Seven-
Layer OSI Reference Model. http://www.andrewpatrick.ca/OSI/10layer.html
(accessed March 13, 2006).

Bordetsky, Alex, Kevin Brown, and Leann Christianson. 2003. Adaptive Management of
QoS Requirements for Wireless Multimedia Communications. Information
Technology and Management 4 (January): 9-31.

Bordetsky, Alex et al. 2007. TNT MIO 07-4 Planning Document.

Caceres, Ramon, et al. 2000. Measurement and Analysis of IP Network Usage and
Behavior. IEEE Communications Magazine 38 (May): 144-151.

Case, Jeffrey D., et al., 1990. A Simple Network Management Protocol (SNMP). IETF
RFC 1157, May.

Choi, Yong-Hoon and Iksoon Hwang. 2005. In-service QoS monitoring of real-time
applications using SM MIB. International Journal of Network Management 15:
31-42.

Claise, Benoit, et al. 2004. Cisco Systems NetFlow Services Export Version 9. IETF RFC
3954, October.

Clark, Allan and Stephen Gilmore. 2006. Evaluating Quality of Service for Service Level
Agreements. Paper presented at the 11th International Workshop on Formal
Methods for Industrial Critical Systems, August, in Bonn, Germany.

Clement, Michael and Alex Bordetsky. 2006. Systematic Adaptation to Network
Resource Constraints in Coalition C2 Environments. Paper presented at the 11th
International Command and Control Research and Technology Symposium,
September 26-28, in Cambridge, England.

Combs, Gerald. Wireshark: The World’s Most Popular Network Analyzer. Wireshark.
http://www.wireshark.org/ (accessed September 5, 2007).

 84

Crnkovic-Dodig, Luka. Fuzzy Math, Path I, The Theory. Peltarion.
http://blog.peltarion.com/2006/10/25/fuzzy-math-part-1-the-theory/ (accessed
August 15, 2007).

DaSilva, Luis A. 2000. QoS Mapping along the Protocol Stack: Discussion and
Preliminary Results. Paper presented at the 2000 IEEE International Conference
on Communications, June 18-22, in New Orleans, USA.

Deri, Luca and Stefano Suin. 2000. Effective Traffic Measurement Using ntop. IEEE
Communications Magazine 38 (May): 138-143.

Estan, Cristian and George Varghese. 2001. New Directions in Traffic Measurement and
Accounting. Paper presented at the 2001 ACM SIGCOMM Internet Measurement
Workshop, November 1-2, in San Francisco, USA.

Exposito, Ernest, et al. 2002. XQoS: A Quality of Service Specification Language. Paper
presented at the 2002 IADIS International Conference on WWW/Internet,
November 13-15, in Lisbon, Portugal.

Galetska, Michael. 2004. User-Perceived Quality of Service in Hybrid Broadcast and
Telecommunication Networks. Paper presented at the 5th Workshop on Digital
Broadcasting, September 23-24, in Erlangen, Germany.

Ghetta, Riccardo and Juan Toledo. EtherApe, a Graphical Network Monitor.
SourceForge.net. http://etherape.sourceforge.net/ (accessed September 4, 2007).

Groove Networks. Groove Virtual Office. Groove.
http://www.groove.net/home/index.cfm (accessed June 12, 2007).

Guo, Xinping and Colin Pattinson. 1997. Quality of Service Requirements for
Multimedia Communications. Paper presented at Time and the Web, June 19, in
Staffordshire, England.

Huang, Dongjie and James Shi. 2001. Quality of Service Scheduling in Wireless
Multimedia Communications. Paper presented at the 53rd Vehicular Technology
Conference, May 6-9, in Rhodes, Greece.

International Engineering Consortium. 2007. Element Management Systems (EMSs):
The TMN FCAPS Model of OSS Tasks. International Engineering Consortium.
http://www.iec.org/online/tutorials/ems/topic03.html (accessed September 16,
2007)

International Telecommunications Union. 2001. End-user multimedia QoS categories.
ITU-T G.1010, November.

 85

Jacobson, Van. 1997. Pathchar: A Tool to Infer Characteristics of Internet Paths. Paper
presented at the 1997 Mathematical Sciences Research Institute Conference, April
21, in Berkeley, USA.

Keen, Peter G. W. and J. Michael Cummins. 1994. Networks in Action: Business Choices
and Telecommunications Decisions. Belmont: Wadsworth.

Keshav, S. and R. Sharma. 1998. Achieving Quality of Service through Network
Performance Management. Paper presented at the 8th International Workshop on
Network and Operating Systems Support for Digital Audio and Video, July 8-10,
in Cambridge, England.

Kessler, Gary C. and Steven D. Shepard. 1997. A Primer On Internet and TCP/IP Tools
and Utilities. IETF RFC 2151, June.

Loguinov, Dmitri and Hayder Radha. 2001. Measurement Study of Low-Bitrate Internet
Video Streaming. Paper presented at ACM SIGCOMM Internet Measurement
Workshop 2001, November 1-2, in San Francisco, USA.

Ma, Alex. Otter: Tool for Topology Display. Cooperative Association for Internet Data
Analysis. http://www.caida.org/tools/visualization/otter/ (accessed September 4,
2007).

McCloghrie, Keith and Marshall T. Rose. 1991. Management Information Base for
Network Management of TCP/IP-based internets: MIB-II. IETF RFC 1213,
March.

Nahrstedt, Klara and Jonathan Smith. 1994. A Service Kernel for Multimedia
Endstations. Paper presented at the 2nd International Workshop on Multimedia:
Advanced Teleservices and High-Speed Communication Architectures,
September 26-28, in Heidelberg, Germany.

Network Uptime. Free Enterprise Network Monitoring Tools – Big Brother. Network
Uptime. http://www.networkuptime.com/tools/enterprise/big_brother.html
(accessed September 4, 2007).

NIST Net. NIST Net Home Page. National Institute of Standards and Technology.
http://www-x.antd.nist.gov/nistnet/ (accessed September 5, 2007).

O’ Neil, Timothy M. 2002. Quality of Experience and Quality of Service: For IP Video
Conferencing. White Paper by Polycom.

Parulkar, Guru, et al. 1997. An Architecture for Monitoring, Visualization, and Control of
Gigabit Networks. IEEE Network, vol. 11 (September/October): 34-43.

Pelco Corporation. Pelco website. Pelco Corporation. http://www.pelco.com/ (accessed
September 5, 2007).

 86

Prasad, Ravi, Constantinos Dovrolis, Margaret Murray, and KC Claffy. 2003. Bandwidth
Estimation: Metrics, Measurement Techniques, and Tools. IEEE Network, vol. 17
(November/December): 27-35.

Senge, Peter. 2006. The Fifth Discipline: The Art and Practice of the Learning
Organization. Rev. ed. New York: Currency.

Siller, Mario and John Woods. 2003. Improving Quality of Experience for Multimedia
Services by QoS arbitration on a QoE Framework. Paper presented at the 13th
Packed Video Workshop, April, in Nantes, France.

Solarwinds. Network Management Software. Solarwinds. http://solarwinds.com/
(accessed July 26, 2007).

Strauss, Jacob, Dina Katabi, and Frans Kaashoek. 2003. A Measurement Study of
Available Bandwidth Estimation Tools. Paper presented at Internet Measurement
Conference 2003, October 27-29, in Miami Beach, USA.

Tirumala, Ajay, et al. NLANR/DAST: Iperf. National Laboratory for Applied Network
Research. http://dast.nlanr.net/Projects/Iperf/ (accessed September 6, 2007).

Van Creveld, Martin. 1985. Command in War. Cambridge: Harvard University Press.

VLC Team. VLC Media Player. VideoLAN. http://www.videolan.org/vlc/ (accessed
September 5, 2007).

Wang, Ping, et al. 2006. A Fuzzy Model for Selection of QoS-Aware Web Services.
Paper presented at the 2006 IEEE International Conference on e-Business
Eingineering, October 24-26, in Shanghai, China.

Yaghmaei, M., M. Baradaran, and H. Talebian. 2006. A Fuzzy QoS Routing Algorithm
for Communication Networks. Paper presented at the 10th IEEE International
Conference on Communication Systems, October 30 – November 1, in Singapore.

Zhang, Runtong and Xiaomin Zhu. 2005. Fuzzy Routing in QoS Networks. In Lecture
Notes in Computer Science, ed. L. Wang and Y. Jin, Vol. 3614: 880-90. Berlin:
Springer-Verlag.

Zhou, Chen, Liang-Tien Chia, and Bu-Sung Lee. 2005. Semantics in Service Discovery
and QoS Measurement. IT Professional 07, no. 2 (March/April): 29-34.

Zimmerman, Hubert. 1980. OSI Reference Model: “The OSI Model of Architecture for
Open Systems Interconnection.” IEEE Transactions on Communications 28: 425-
32.

 87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Dr. Alex Bordetsky
Naval Postgraduate School
Monterey, CA

4. Lt. Col. Karl Pfeiffer, USAF
Naval Postgraduate School
Monterey, CA

5. Dr. Dan Boger
Naval Postgraduate School
Monterey, CA

6. Dr. David Netzer
Naval Postgraduate School
Monterey, CA

